1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
#ifndef L1TMTFOverlapParams_h
#define L1TMTFOverlapParams_h
#include <memory>
#include <iostream>
#include <vector>
#include <cmath>
#include "CondFormats/Serialization/interface/Serializable.h"
#include "CondFormats/L1TObjects/interface/LUT.h"
///////////////////////////////////////
///////////////////////////////////////
class L1TMuonOverlapParams {
public:
class Node {
public:
std::string type_;
unsigned version_;
l1t::LUT LUT_;
std::vector<double> dparams_;
std::vector<unsigned> uparams_;
std::vector<int> iparams_;
std::vector<std::string> sparams_;
Node() {
type_ = "unspecified";
version_ = 0;
}
COND_SERIALIZABLE;
};
class LayerMapNode {
public:
///short layer number used within OMTF emulator
unsigned int hwNumber;
///logic numer of the layer
unsigned int logicNumber;
///Is this a bending layers?
bool bendingLayer;
///Login number of layer to which this layer is tied.
///I.e both layers have to fire to account a hit
unsigned int connectedToLayer;
LayerMapNode(void) : hwNumber(0), logicNumber(0), bendingLayer(false), connectedToLayer(0) {}
COND_SERIALIZABLE;
};
class RefLayerMapNode {
public:
///Reference layer number
unsigned int refLayer;
///Corresponding logical layer number
unsigned int logicNumber;
RefLayerMapNode(void) : refLayer(0), logicNumber(0) {}
COND_SERIALIZABLE;
};
class RefHitNode {
public:
unsigned int iInput;
int iPhiMin, iPhiMax;
unsigned int iRefHit;
unsigned int iRefLayer;
unsigned int iRegion;
RefHitNode(void) : iInput(0), iPhiMin(0), iPhiMax(0), iRefHit(0), iRefLayer(0), iRegion(0) {}
COND_SERIALIZABLE;
};
class LayerInputNode {
public:
unsigned int iFirstInput;
unsigned int iLayer;
unsigned int nInputs;
LayerInputNode(void) : iFirstInput(0), iLayer(0), nInputs(0) {}
COND_SERIALIZABLE;
};
enum { Version = 1 };
// DO NOT ADD ENTRIES ANYWHERE BUT DIRECTLY BEFORE "NUM_OMTFPARAMNODES"
enum {
CHARGE = 0,
ETA = 1,
PT = 2,
PDF = 3,
MEANDISTPHI = 4,
GENERAL = 5,
SECTORS_START = 6,
SECTORS_END = 7,
DIST_PHI_SHIFT = 8,
NUM_OMTFPARAMNODES = 9
};
// General configuration parameters indexes
enum {
GENERAL_ADDRBITS = 0,
GENERAL_VALBITS = 1,
GENERAL_HITSPERLAYER = 2,
GENERAL_PHIBITS = 3,
GENERAL_PHIBINS = 4,
GENERAL_NREFHITS = 5,
GENERAL_NTESTREFHITS = 6,
GENERAL_NPROCESSORS = 7,
GENERAL_NLOGIC_REGIONS = 8,
GENERAL_NINPUTS = 9,
GENERAL_NLAYERS = 10,
GENERAL_NREFLAYERS = 11,
GENERAL_NGOLDENPATTERNS = 12,
GENERAL_NCONFIG = 13
};
L1TMuonOverlapParams() {
fwVersion_ = Version;
pnodes_.resize(NUM_OMTFPARAMNODES);
}
~L1TMuonOverlapParams() {}
// Firmware version
unsigned fwVersion() const { return fwVersion_; }
void setFwVersion(unsigned fwVersion) { fwVersion_ = fwVersion; }
///General definitions
const std::vector<int> *generalParams() const { return &pnodes_[GENERAL].iparams_; }
void setGeneralParams(const std::vector<int> ¶msVec) {
pnodes_[GENERAL].type_ = "INT";
pnodes_[GENERAL].iparams_ = paramsVec;
}
///Access to specific general settings.
int nPdfAddrBits() const { return pnodes_[GENERAL].iparams_[GENERAL_ADDRBITS]; };
int nPdfValBits() const { return pnodes_[GENERAL].iparams_[GENERAL_VALBITS]; };
int nHitsPerLayer() const { return pnodes_[GENERAL].iparams_[GENERAL_HITSPERLAYER]; };
int nPhiBits() const { return pnodes_[GENERAL].iparams_[GENERAL_PHIBITS]; };
int nPhiBins() const { return pnodes_[GENERAL].iparams_[GENERAL_PHIBINS]; };
int nRefHits() const { return pnodes_[GENERAL].iparams_[GENERAL_NREFHITS]; };
int nTestRefHits() const { return pnodes_[GENERAL].iparams_[GENERAL_NTESTREFHITS]; };
int nProcessors() const { return pnodes_[GENERAL].iparams_[GENERAL_NPROCESSORS]; };
int nLogicRegions() const { return pnodes_[GENERAL].iparams_[GENERAL_NLOGIC_REGIONS]; };
int nInputs() const { return pnodes_[GENERAL].iparams_[GENERAL_NINPUTS]; };
int nLayers() const { return pnodes_[GENERAL].iparams_[GENERAL_NLAYERS]; };
int nRefLayers() const { return pnodes_[GENERAL].iparams_[GENERAL_NREFLAYERS]; };
int nGoldenPatterns() const { return pnodes_[GENERAL].iparams_[GENERAL_NGOLDENPATTERNS]; };
///Connections definitions
void setLayerMap(const std::vector<LayerMapNode> &aVector) { layerMap_ = aVector; }
void setRefLayerMap(const std::vector<RefLayerMapNode> &aVector) { refLayerMap_ = aVector; }
void setRefHitMap(const std::vector<RefHitNode> &aVector) { refHitMap_ = aVector; };
void setGlobalPhiStartMap(const std::vector<int> &aVector) { globalPhiStart_ = aVector; };
void setLayerInputMap(const std::vector<LayerInputNode> &aVector) { layerInputMap_ = aVector; };
void setConnectedSectorsStart(const std::vector<int> &aVector) {
pnodes_[SECTORS_START].type_ = "INT";
pnodes_[SECTORS_START].iparams_ = aVector;
};
void setConnectedSectorsEnd(const std::vector<int> &aVector) {
pnodes_[SECTORS_END].type_ = "INT";
pnodes_[SECTORS_END].iparams_ = aVector;
};
const std::vector<LayerMapNode> *layerMap() const { return &layerMap_; };
const std::vector<RefLayerMapNode> *refLayerMap() const { return &refLayerMap_; };
const std::vector<RefHitNode> *refHitMap() const { return &refHitMap_; };
const std::vector<int> *globalPhiStartMap() const { return &globalPhiStart_; };
const std::vector<LayerInputNode> *layerInputMap() const { return &layerInputMap_; };
const std::vector<int> *connectedSectorsStart() const { return &pnodes_[SECTORS_START].iparams_; };
const std::vector<int> *connectedSectorsEnd() const { return &pnodes_[SECTORS_END].iparams_; };
///Golden Patterns definitions
const l1t::LUT *chargeLUT() const { return &pnodes_[CHARGE].LUT_; }
const l1t::LUT *etaLUT() const { return &pnodes_[ETA].LUT_; }
const l1t::LUT *ptLUT() const { return &pnodes_[PT].LUT_; }
const l1t::LUT *pdfLUT() const { return &pnodes_[PDF].LUT_; }
const l1t::LUT *meanDistPhiLUT() const { return &pnodes_[MEANDISTPHI].LUT_; }
/**
* return nullptr if the DistPhiShiftLUT is not available in the given L1TMuonOverlapParamsRcd,
* which is the case for the fwVersion <= 0x6
*/
const l1t::LUT *distPhiShiftLUT() const {
if (pnodes_.size() >= (DIST_PHI_SHIFT + 1))
return &pnodes_[DIST_PHI_SHIFT].LUT_;
else
return nullptr;
}
void setChargeLUT(const l1t::LUT &lut) {
pnodes_[CHARGE].type_ = "LUT";
pnodes_[CHARGE].LUT_ = lut;
}
void setEtaLUT(const l1t::LUT &lut) {
pnodes_[ETA].type_ = "LUT";
pnodes_[ETA].LUT_ = lut;
}
void setPtLUT(const l1t::LUT &lut) {
pnodes_[PT].type_ = "LUT";
pnodes_[PT].LUT_ = lut;
}
void setPdfLUT(const l1t::LUT &lut) {
pnodes_[PDF].type_ = "LUT";
pnodes_[PDF].LUT_ = lut;
}
void setMeanDistPhiLUT(const l1t::LUT &lut) {
pnodes_[MEANDISTPHI].type_ = "LUT";
pnodes_[MEANDISTPHI].LUT_ = lut;
}
void setDistPhiShiftLUT(const l1t::LUT &lut) {
pnodes_[DIST_PHI_SHIFT].type_ = "LUT";
pnodes_[DIST_PHI_SHIFT].LUT_ = lut;
}
private:
///Version of firmware configuration
unsigned fwVersion_;
///vector of LUT like parameters
std::vector<Node> pnodes_;
///Vector of structs representing definitions of measurement layers.
std::vector<LayerMapNode> layerMap_;
///Vector of structs representing definitins of reference layers
///in terms of logic measurement layers numbers.
std::vector<RefLayerMapNode> refLayerMap_;
///Vector of RefHitNode defining assignenemt of
///reference hits to logical regions.
///definitions for all processor are serialized in a single vector.
std::vector<RefHitNode> refHitMap_;
///Vector of global phi of processor beggining in each reference layer.
///All processors are serialized in a single vector.
std::vector<int> globalPhiStart_;
///Vector of all definitions of input ranges for given
///logic region.
///All processors and all regions are serialized in a single vector.
std::vector<LayerInputNode> layerInputMap_;
COND_SERIALIZABLE;
};
#endif
|