1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
|
#ifndef CondFormats_L1TObjects_L1TriggerKeyExt_h
#define CondFormats_L1TObjects_L1TriggerKeyExt_h
#include "CondFormats/Serialization/interface/Serializable.h"
#include <string>
#include <map>
/* L1 key used to load all other configuration data from offline db.
* This class is just a proxy to the real data. It will contain mapping from data and record
* pair to the payload token that could be used to read data. So the use case could be as follows:
* 1. User read L1TriggerKey for given Tag and IOV pair.
* 2. For each record and type that user whant to load, it ask method get for the payload.
* 3. Reads the data with payloads extracted from step 2.
*
* It is not adviced for user to use this class and direct Pool DB manipulation. One should use
* DataReader and DataWriter classes.
*
* The good point to note is that IOV of all L1 trigger condfiguration is controled bay IOV of L1TriggeKey.
* If new configuration has to be created - new L1TriggerKey has to be saved/loaded. More then one key can use
* the same paylaod token. This would just mean that data pointed by this payload token has not changed.
*/
class L1TriggerKeyExt {
public:
typedef std::map<std::string, std::string> RecordToKey;
enum L1Subsystems { kuGT, kuGMT, kCALO, kEMTF, kOMTF, kBMTF, kTWINMUX, kNumberSubsystems };
// Empty strings cannot be stored in the CondDB, so define a null key string.
const static std::string kNullKey;
const static std::string kEmptyKey;
// Constructors
L1TriggerKeyExt() {
for (int i = 0; i < kNumberSubsystems; ++i) {
m_subsystemKeys[i] = kNullKey;
}
}
/* Adds new record and type mapping to payload. If such exists, nothing happens */
void add(const std::string& record, const std::string& type, const std::string& key) {
m_recordToKey.emplace(record + "@" + type, key.empty() ? kNullKey : key);
}
void add(const RecordToKey& map) {
for (RecordToKey::const_iterator itr = map.begin(); itr != map.end(); ++itr) {
m_recordToKey.emplace(itr->first, itr->second.empty() ? kNullKey : itr->second);
}
}
void setTSCKey(const std::string& tscKey) { m_tscKey = tscKey; }
void setSubsystemKey(L1Subsystems subsystem, const std::string& key) {
m_subsystemKeys[subsystem] = key.empty() ? kNullKey : key;
}
/* Gets payload key for record and type. If no such paylaod exists, emtpy string
* is returned.
*/
std::string get(const std::string& record, const std::string& type) const {
RecordToKey::const_iterator it = m_recordToKey.find(record + "@" + type);
if (it == m_recordToKey.end())
return std::string();
else
return it->second == kNullKey ? kEmptyKey : it->second;
}
const std::string& tscKey() const { return m_tscKey; }
const std::string& subsystemKey(L1Subsystems subsystem) const {
std::map<int, std::string>::const_iterator key = m_subsystemKeys.find(subsystem);
return key == m_subsystemKeys.end() || key->second == kNullKey ? kEmptyKey : key->second;
}
// NB: null keys are represented by kNullKey, not by an empty string
const RecordToKey& recordToKeyMap() const { return m_recordToKey; }
protected:
/* Mapping from records and types to tokens.
* I as unvable to make type std::map<std::pair<std::string, std::string>, std::string> persistent
* so record and type are concatanated with @ sign and resulting string is used as a key.
*/
// wsun 03/2008: instead of tokens, store the configuration keys instead.
/* typedef std::map<std::string, std::string> RecordsToToken; */
/* RecordsToToken recordsToToken; */
RecordToKey m_recordToKey;
// wsun 03/2008: add data member for TSC key
std::string m_tscKey;
std::map<int, std::string> m_subsystemKeys;
COND_SERIALIZABLE;
};
#endif
|