1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
#include "CondFormats/SiStripObjects/interface/ApvTimingAnalysis.h"
#include "DataFormats/SiStripCommon/interface/SiStripHistoTitle.h"
#include "DataFormats/SiStripCommon/interface/SiStripEnumsAndStrings.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include <iostream>
#include <sstream>
#include <iomanip>
#include <cmath>
using namespace sistrip;
// ----------------------------------------------------------------------------
//
const float ApvTimingAnalysis::optimumSamplingPoint_ = 15.; // [ns]
// ----------------------------------------------------------------------------
//
const float ApvTimingAnalysis::tickMarkHeightThreshold_ = 50.; // [ADC]
// ----------------------------------------------------------------------------
//
const float ApvTimingAnalysis::frameFindingThreshold_ = (2. / 3.); // fraction of tick mark height
// ----------------------------------------------------------------------------
//
float ApvTimingAnalysis::refTime_ = 1. * sistrip::invalid_;
// ----------------------------------------------------------------------------
//
ApvTimingAnalysis::ApvTimingAnalysis(const uint32_t& key)
: CommissioningAnalysis(key, sistrip::apvTimingAnalysis_),
time_(1. * sistrip::invalid_),
error_(1. * sistrip::invalid_),
delay_(1. * sistrip::invalid_),
height_(1. * sistrip::invalid_),
base_(1. * sistrip::invalid_),
peak_(1. * sistrip::invalid_),
synchronized_(false) {
;
}
// ----------------------------------------------------------------------------
//
ApvTimingAnalysis::ApvTimingAnalysis()
: CommissioningAnalysis(sistrip::apvTimingAnalysis_),
time_(1. * sistrip::invalid_),
error_(1. * sistrip::invalid_),
delay_(1. * sistrip::invalid_),
height_(1. * sistrip::invalid_),
base_(1. * sistrip::invalid_),
peak_(1. * sistrip::invalid_),
synchronized_(false) {
;
}
// ----------------------------------------------------------------------------
//
void ApvTimingAnalysis::reset() {
time_ = 1. * sistrip::invalid_;
error_ = 1. * sistrip::invalid_;
delay_ = 1. * sistrip::invalid_;
height_ = 1. * sistrip::invalid_;
base_ = 1. * sistrip::invalid_;
peak_ = 1. * sistrip::invalid_;
synchronized_ = false;
}
// ----------------------------------------------------------------------------
//
void ApvTimingAnalysis::refTime(const float& time, const float& targetDelay) {
// Checks synchronization to reference time is done only once
if (synchronized_) {
edm::LogWarning(mlCommissioning_) << "[" << myName() << "::" << __func__ << "]"
<< " Attempting to re-synchronize with reference time!"
<< " Not allowed!";
return;
}
synchronized_ = true;
// Set reference time and check if tick mark time is valid
refTime_ = time;
if (time_ > sistrip::valid_) {
return;
}
// Calculate position of "sampling point" of last tick;
int32_t position;
if (targetDelay == -1) { // by default use latest tick
position = static_cast<int32_t>(rint(refTime_ + optimumSamplingPoint_));
} else {
position = static_cast<int32_t>(rint(targetDelay + optimumSamplingPoint_));
}
// Calculate adjustment so that sampling point is multiple of 25 (ie, synched with FED sampling)
float adjustment = 25 - position % 25;
// Calculate delay required to synchronise with this adjusted sampling position
if (targetDelay == -1) { // by default align forward to the latest tick
delay_ = (refTime_ + adjustment) - time_;
} else { // otherwise use the supplied target delay
if (adjustment > 25 / 2)
adjustment -= 25; // go as close as possible to desired target
delay_ = (targetDelay + adjustment) - time_;
}
// Check reference time
if (refTime_ < 0. || refTime_ > sistrip::valid_) {
refTime_ = sistrip::invalid_;
addErrorCode(sistrip::invalidRefTime_);
}
// Check delay is valid
if (delay_ < -sistrip::valid_ || delay_ > sistrip::valid_) {
delay_ = sistrip::invalid_;
addErrorCode(sistrip::invalidDelayTime_);
}
}
// ----------------------------------------------------------------------------
//
uint16_t ApvTimingAnalysis::frameFindingThreshold() const {
if ((getErrorCodes().empty() || getErrorCodes()[0] == "TickMarkRecovered") && time_ < sistrip::valid_ &&
base_ < sistrip::valid_ && peak_ < sistrip::valid_ && height_ < sistrip::valid_ &&
height_ > tickMarkHeightThreshold_) {
return ((static_cast<uint16_t>(base_ + height_ * ApvTimingAnalysis::frameFindingThreshold_) / 32) * 32);
} else {
return sistrip::invalid_;
}
}
// ----------------------------------------------------------------------------
//
bool ApvTimingAnalysis::foundTickMark() const {
return ((getErrorCodes().empty() || getErrorCodes()[0] == "TickMarkRecovered") && time_ < sistrip::valid_ &&
base_ < sistrip::valid_ && peak_ < sistrip::valid_ && height_ < sistrip::valid_ &&
frameFindingThreshold() < sistrip::valid_);
}
// ----------------------------------------------------------------------------
//
bool ApvTimingAnalysis::isValid() const {
return ((getErrorCodes().empty() || getErrorCodes()[0] == "TickMarkRecovered") && time_ < sistrip::valid_ &&
base_ < sistrip::valid_ && peak_ < sistrip::valid_ && height_ < sistrip::valid_ &&
frameFindingThreshold() < sistrip::valid_ && synchronized_ && refTime_ < sistrip::valid_ &&
delay_ < sistrip::valid_);
}
// ----------------------------------------------------------------------------
//
void ApvTimingAnalysis::print(std::stringstream& ss, uint32_t not_used) {
header(ss);
float sampling1 = sistrip::invalid_;
if (time_ <= sistrip::valid_) {
sampling1 = time_ + optimumSamplingPoint_;
}
float sampling2 = sistrip::invalid_;
if (refTime_ <= sistrip::valid_) {
sampling2 = refTime_ + optimumSamplingPoint_;
}
float adjust = sistrip::invalid_;
if (sampling1 <= sistrip::valid_ && delay_ <= sistrip::valid_) {
adjust = sampling1 + delay_;
}
ss << std::fixed << std::setprecision(2) << " Tick mark: time of rising edge [ns] : " << time_
<< std::endl
//<< " Error on time of rising edge [ns] : " << error_ << std::endl
<< " Tick mark: time of sampling point [ns] : " << sampling1 << std::endl
<< " Ref tick: time of rising edge [ns] : " << refTime_ << std::endl
<< " Ref tick: time of sampling point [ns] : " << sampling2 << std::endl
<< " Ref tick: adjusted sampling point [ns] : " << adjust << std::endl
<< " Delay required to synchronise [ns] : " << delay_ << std::endl
<< " Tick mark bottom (baseline) [ADC] : " << base_ << std::endl
<< " Tick mark top [ADC] : " << peak_ << std::endl
<< " Tick mark height [ADC] : " << height_ << std::endl
<< " Frame finding threshold [ADC] : " << frameFindingThreshold() << std::endl
<< std::boolalpha << " Tick mark found : " << foundTickMark() << std::endl
<< " isValid : " << isValid() << std::endl
<< std::noboolalpha << " Error codes (found " << std::setw(3) << std::setfill(' ') << getErrorCodes().size()
<< ") : ";
if (getErrorCodes().empty()) {
ss << "(none)";
} else {
VString::const_iterator istr = getErrorCodes().begin();
VString::const_iterator jstr = getErrorCodes().end();
for (; istr != jstr; ++istr) {
ss << *istr << " ";
}
}
ss << std::endl;
}
|