Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
#include "CondFormats/SiStripObjects/interface/SiStripApvSimulationParameters.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "CLHEP/Random/RandFlat.h"

namespace {
  PhysicsTools::Calibration::HistogramF2D calculateXInt(const SiStripApvSimulationParameters::LayerParameters& params) {
    auto hXInt = (params.hasEquidistantBinsY()
                      ? (params.hasEquidistantBinsZ()
                             ? PhysicsTools::Calibration::HistogramF2D(
                                   params.numberOfBinsY(), params.rangeY(), params.numberOfBinsZ(), params.rangeZ())
                             : PhysicsTools::Calibration::HistogramF2D(
                                   params.numberOfBinsY(), params.rangeY(), params.upperLimitsZ()))
                      : (params.hasEquidistantBinsZ()
                             ? PhysicsTools::Calibration::HistogramF2D(
                                   params.upperLimitsY(), params.numberOfBinsZ(), params.rangeZ())
                             : PhysicsTools::Calibration::HistogramF2D(params.upperLimitsY(), params.upperLimitsZ())));
    for (int i{0}; i != params.numberOfBinsY() + 2; ++i) {
      for (int j{0}; j != params.numberOfBinsZ() + 2; ++j) {
        float xInt = 0.;
        for (int k{0}; k != params.numberOfBinsX() + 2; ++k) {
          xInt += params.binContent(k, i, j);
        }
        hXInt.setBinContent(i, j, xInt);
      }
    }
    return hXInt;
  }

  float xBinPos(const SiStripApvSimulationParameters::LayerParameters& hist, int iBin, float pos = 0.5) {
    // NOTE: does not work for under- and overflow bins (iBin = 0 and iBIn == hist.numberOfBinsX()+1)
    if (hist.hasEquidistantBinsX()) {
      const auto range = hist.rangeX();
      const auto binWidth = (range.max - range.min) / hist.numberOfBinsX();
      return range.min + (iBin - 1 + pos) * binWidth;
    } else {
      return (1. - pos) * hist.upperLimitsX()[iBin - 1] + pos * hist.upperLimitsX()[iBin];
    }
  }
}  // namespace

void SiStripApvSimulationParameters::calculateIntegrals() {
  if (m_barrelParam.size() != m_barrelParam_xInt.size()) {
    m_barrelParam_xInt.resize(m_barrelParam.size());
    for (unsigned int i{0}; i != m_barrelParam.size(); ++i) {
      m_barrelParam_xInt[i] = calculateXInt(m_barrelParam[i]);
    }
  }
  if (m_endcapParam.size() != m_endcapParam_xInt.size()) {
    m_endcapParam_xInt.resize(m_endcapParam.size());
    for (unsigned int i{0}; i != m_endcapParam.size(); ++i) {
      m_endcapParam_xInt[i] = calculateXInt(m_endcapParam[i]);
    }
  }
}

bool SiStripApvSimulationParameters::putTIB(SiStripApvSimulationParameters::layerid layer,
                                            SiStripApvSimulationParameters::LayerParameters&& params) {
  if ((layer > m_nTIB) || (layer < 1)) {
    edm::LogError("SiStripApvSimulationParameters")
        << "[" << __PRETTY_FUNCTION__ << "] layer index " << layer << " out of range [1," << m_nTIB << "]";
    return false;
  }
  m_barrelParam[layer - 1] = params;
  m_barrelParam_xInt[layer - 1] = calculateXInt(params);
  return true;
}

bool SiStripApvSimulationParameters::putTOB(SiStripApvSimulationParameters::layerid layer,
                                            SiStripApvSimulationParameters::LayerParameters&& params) {
  if ((layer > m_nTOB) || (layer < 1)) {
    edm::LogError("SiStripApvSimulationParameters")
        << "[" << __PRETTY_FUNCTION__ << "] layer index " << layer << " out of range [1," << m_nTOB << ")";
    return false;
  }
  m_barrelParam[m_nTIB + layer - 1] = params;
  m_barrelParam_xInt[m_nTIB + layer - 1] = calculateXInt(params);
  return true;
}

bool SiStripApvSimulationParameters::putTID(SiStripApvSimulationParameters::layerid wheel,
                                            SiStripApvSimulationParameters::LayerParameters&& params) {
  if ((wheel > m_nTID) || (wheel < 1)) {
    edm::LogError("SiStripApvSimulationParameters")
        << "[" << __PRETTY_FUNCTION__ << "] wheel index " << wheel << " out of range [1," << m_nTID << "]";
    return false;
  }
  m_endcapParam[wheel - 1] = params;
  m_endcapParam_xInt[wheel - 1] = calculateXInt(params);
  return true;
}

bool SiStripApvSimulationParameters::putTEC(SiStripApvSimulationParameters::layerid wheel,
                                            SiStripApvSimulationParameters::LayerParameters&& params) {
  if ((wheel > m_nTEC) || (wheel < 1)) {
    edm::LogError("SiStripApvSimulationParameters")
        << "[" << __PRETTY_FUNCTION__ << "] wheel index " << wheel << " out of range [1," << m_nTEC << ")";
    return false;
  }
  m_endcapParam[m_nTID + wheel - 1] = params;
  m_endcapParam_xInt[m_nTID + wheel - 1] = calculateXInt(params);
  return true;
}

float SiStripApvSimulationParameters::sampleBarrel(layerid layerIdx,
                                                   float z,
                                                   float pu,
                                                   CLHEP::HepRandomEngine* engine) const {
  if (m_barrelParam.size() != m_barrelParam_xInt.size()) {
    throw cms::Exception("LogicError") << "x-integrals of 3D histograms have not been calculated";
  }
  const auto layerParam = m_barrelParam[layerIdx];
  const int ip = layerParam.findBinY(pu);
  const int iz = layerParam.findBinZ(z);
  const float norm = m_barrelParam_xInt[layerIdx].binContent(ip, iz);
  const auto val = CLHEP::RandFlat::shoot(engine) * norm;
  if (val < layerParam.binContent(0, ip, iz)) {  // underflow
    return layerParam.rangeX().min;
  } else if (norm - val < layerParam.binContent(layerParam.numberOfBinsX() + 1, ip, iz)) {  // overflow
    return layerParam.rangeX().max;
  } else {  // loop over bins, return center of our bin
    float sum = layerParam.binContent(0, ip, iz);
    for (int i{1}; i != layerParam.numberOfBinsX() + 1; ++i) {
      sum += layerParam.binContent(i, ip, iz);
      if (sum > val) {
        return xBinPos(layerParam, i, (sum - val) / layerParam.binContent(i, ip, iz));
      }
    }
  }
  throw cms::Exception("LogicError") << "Problem drawing a random number from the distribution";
}

float SiStripApvSimulationParameters::sampleEndcap(layerid wheelIdx,
                                                   float r,
                                                   float pu,
                                                   CLHEP::HepRandomEngine* engine) const {
  if (m_endcapParam.size() != m_endcapParam_xInt.size()) {
    throw cms::Exception("LogicError") << "x-integrals of 3D histograms have not been calculated";
  }
  const auto layerParam = m_endcapParam[wheelIdx];
  const int ip = layerParam.findBinY(pu);
  const int ir = layerParam.findBinZ(r);
  const float norm = m_endcapParam_xInt[wheelIdx].binContent(ip, ir);
  const auto val = CLHEP::RandFlat::shoot(engine) * norm;
  if (val < layerParam.binContent(0, ip, ir)) {  // underflow
    return layerParam.rangeX().min;
  } else if (norm - val < layerParam.binContent(layerParam.numberOfBinsX() + 1, ip, ir)) {  // overflow
    return layerParam.rangeX().max;
  } else {  // loop over bins, return center of our bin
    float sum = layerParam.binContent(0, ip, ir);
    for (int i{1}; i != layerParam.numberOfBinsX() + 1; ++i) {
      sum += layerParam.binContent(i, ip, ir);
      if (sum > val) {
        return xBinPos(layerParam, i, (sum - val) / layerParam.binContent(i, ip, ir));
      }
    }
  }
  throw cms::Exception("LogicError") << "Problem drawing a random number from the distribution";
}