1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
|
#!/usr/bin/env python3
import pycurl
from io import BytesIO
import pycurl
import ast
import subprocess
import pandas as pd
import argparse
from bs4 import BeautifulSoup
import numpy as np
import os
import json
import sys
import itertools
import json
## Helpers
base_cert_url = "https://cms-service-dqmdc.web.cern.ch/CAF/certification/"
base_cert_path = "/eos/user/c/cmsdqm/www/CAF/certification/"
def get_url_clean(url):
buffer = BytesIO()
c = pycurl.Curl()
c.setopt(c.URL, url)
c.setopt(c.WRITEDATA, buffer)
c.perform()
c.close()
return BeautifulSoup(buffer.getvalue(), "lxml").text
def get_lumi_ranges(i):
result = []
for _, b in itertools.groupby(enumerate(i), lambda pair: pair[1] - pair[0]):
b = list(b)
result.append([b[0][1],b[-1][1]])
return result
def das_do_command(cmd):
out = subprocess.check_output(cmd, shell=True, executable="/bin/bash").decode('utf8')
return out.split("\n")
def das_key(dataset):
return 'dataset='+dataset if "#" not in dataset else 'block='+dataset
def das_file_site(dataset, site):
cmd = "dasgoclient --query='file %s site=%s'"%(das_key(dataset),site)
out = das_do_command(cmd)
df = pd.DataFrame(out,columns=["file"])
return df
def das_file_data(dataset,opt=""):
cmd = "dasgoclient --query='file %s %s| grep file.name, file.nevents'"%(das_key(dataset),opt)
out = das_do_command(cmd)
out = [np.array(r.split(" "))[[0,3]] for r in out if len(r) > 0]
df = pd.DataFrame(out,columns=["file","events"])
df.events = df.events.values.astype(int)
return df
def das_lumi_data(dataset,opt=""):
cmd = "dasgoclient --query='file,lumi,run %s %s'"%(das_key(dataset),opt)
out = das_do_command(cmd)
out = [r.split(" ") for r in out if len(r)>0]
df = pd.DataFrame(out,columns=["file","run","lumis"])
return df
def das_run_events_data(dataset,run,opt=""):
cmd = "dasgoclient --query='file %s run=%s %s | sum(file.nevents) '"%(das_key(dataset),run,opt)
out = das_do_command(cmd)[0]
out = [o for o in out.split(" ") if "sum" not in o]
out = int([r.split(" ") for r in out if len(r)>0][0][0])
return out
def das_run_data(dataset,opt=""):
cmd = "dasgoclient --query='run %s %s '"%(das_key(dataset),opt)
out = das_do_command(cmd)
return out
def no_intersection():
print("No intersection between:")
print(" - json : ", best_json)
print(" - dataset: ", dataset)
print("Exiting.")
sys.exit(1)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset','-d', default=None, help="Dataset Name (e.g. '/DisplacedJet/Run2024C-v1/RAW', may also be a block (e.g /ZeroBias/Run2024J-v1/RAW#d8058bab-4e55-45b0-abb6-405aa3abc2af)",type=str,required=True)
parser.add_argument('--threshold','-t', help ="Event threshold per file",type=int,default=-1)
parser.add_argument('--events','-e', help ="Tot number of events targeted",type=int,default=-1)
parser.add_argument('--outfile','-o', help='Dump results to file', type=str, default=None)
parser.add_argument('--pandas', '-pd',action='store_true',help="Store the whole dataset (no event or threshold cut) in a csv")
parser.add_argument('--proxy','-p', help='Allow to parse a x509 proxy if needed', type=str, default=None)
parser.add_argument('--site','-s', help='Only data at specific site', type=str, default=None)
parser.add_argument('--lumis','-l', help='Output file for lumi ranges for the selected files (if black no lumiranges calculated)', type=str, default=None)
parser.add_argument('--precheck','-pc', action='store_true', help='Check run per run before building the dataframes, to avoid huge caching.')
parser.add_argument('--nogolden','-ng', action='store_true', help='Do not crosscheck the dataset run and lumis with a Golden json for data certification')
parser.add_argument('--run','-r', help ="Target a specific run",type=int,default=None,nargs="+")
args = parser.parse_args()
if args.proxy is not None:
os.environ["X509_USER_PROXY"] = args.proxy
elif "X509_USER_PROXY" not in os.environ:
print("No X509 proxy set. Exiting.")
sys.exit(1)
## Check if we are in the cms-bot "environment"
testing = "JENKINS_PREFIX" in os.environ
dataset = args.dataset
events = args.events
threshold = args.threshold
outfile = args.outfile
site = args.site
lumis = args.lumis
runs = args.run
das_opt = ""
if runs is not None:
das_opt = "run in %s"%(str([int(r) for r in runs]))
if not args.nogolden:
## get the greatest golden json
year = dataset.split("Run")[1][2:4] # from 20XX to XX
PD = dataset.split("/")[1]
cert_type = "Collisions" + str(year)
if "Cosmics" in dataset:
cert_type = "Cosmics" + str(year)
elif "Commisioning" in dataset:
cert_type = "Commisioning2020"
elif "HI" in PD:
cert_type = "Collisions" + str(year) + "HI"
cert_path = base_cert_path + cert_type + "/"
web_fallback = False
## if we have access to eos we get from there ...
if os.path.isdir(cert_path):
json_list = os.listdir(cert_path)
if len(json_list) == 0:
web_fallback == True
json_list = [c for c in json_list if "Golden" in c and "era" not in c]
json_list = [c for c in json_list if c.startswith("Cert_C") and c.endswith("json")]
else:
web_fallback = True
## ... if not we go to the website
if web_fallback:
cert_url = base_cert_url + cert_type + "/"
json_list = get_url_clean(cert_url).split("\n")
json_list = [c for c in json_list if "Golden" in c and "era" not in c and "Cert_C" in c]
json_list = [[cc for cc in c.split(" ") if cc.startswith("Cert_C") and cc.endswith("json")][0] for c in json_list]
# the larger the better, assuming file naming schema
# Cert_X_RunStart_RunFinish_Type.json
# TODO if args.run keep golden only with right range
run_ranges = [int(c.split("_")[3]) - int(c.split("_")[2]) for c in json_list]
latest_json = np.array(json_list[np.argmax(run_ranges)]).reshape(1,-1)[0].astype(str)
best_json = str(latest_json[0])
if not web_fallback:
with open(cert_path + "/" + best_json) as js:
golden = json.load(js)
else:
golden = get_url_clean(cert_url + best_json)
golden = ast.literal_eval(golden) #converts string to dict
# skim for runs in input
if runs is not None:
for k in golden:
if k not in args.run:
golden.pop(k)
# golden json with all the lumisections
golden_flat = {}
for k in golden:
R = []
for r in golden[k]:
R = R + [f for f in range(r[0],r[1]+1)]
golden_flat[k] = R
# let's just check there's an intersection between the
# dataset and the json
data_runs = das_run_data(dataset)
golden_data_runs = [r for r in data_runs if r in golden_flat]
if (len(golden_data_runs)==0):
no_intersection()
# building the dataframe, cleaning for bad lumis
golden_data_runs_tocheck = golden_data_runs
if testing or args.precheck:
golden_data_runs_tocheck = []
# Here we check run per run.
# This implies more dasgoclient queries, but smaller outputs
# useful when running the IB/PR tests not to have huge
# query results that have to be cached.
sum_events = 0
for r in golden_data_runs:
sum_events = sum_events + int(das_run_events_data(dataset,r))
golden_data_runs_tocheck.append(r)
if events > 0 and sum_events > events:
break
das_opt = "run in %s"%(str([int(g) for g in golden_data_runs_tocheck]))
df = das_lumi_data(dataset,opt=das_opt).merge(das_file_data(dataset,opt=das_opt),on="file",how="inner") # merge file informations with run and lumis
df["lumis"] = [[int(ff) for ff in f.replace("[","").replace("]","").split(",")] for f in df.lumis.values]
if not args.nogolden:
df_rs = []
for r in golden_data_runs_tocheck:
cut = (df["run"] == r)
if not any(cut):
continue
df_r = df[cut]
# jumping low event content runs
if df_r["events"].sum() < threshold:
continue
good_lumis = np.array([len([ll for ll in l if ll in golden_flat[r]]) for l in df_r.lumis])
n_lumis = np.array([len(l) for l in df_r.lumis])
df_rs.append(df_r[good_lumis==n_lumis])
if (len(df_rs)==0):
no_intersection()
df = pd.concat(df_rs)
df.loc[:,"min_lumi"] = [min(f) for f in df.lumis]
df.loc[:,"max_lumi"] = [max(f) for f in df.lumis]
df = df.sort_values(["run","min_lumi","max_lumi"])
if site is not None:
df = df.merge(das_file_site(dataset,site),on="file",how="inner")
if args.pandas:
df.to_csv(dataset.replace("/","")+".csv")
if events > 0:
df = df[df["events"] <= events] #jump too big files
df.loc[:,"sum_evs"] = df.loc[:,"events"].cumsum()
df = df[df["sum_evs"] < events]
files = df.file
if lumis is not None:
lumi_ranges = { int(r) : list(get_lumi_ranges(np.sort(np.concatenate(df.loc[df["run"]==r,"lumis"].values).ravel()).tolist())) for r in np.unique(df.run.values).tolist()}
with open(lumis, 'w') as fp:
json.dump(lumi_ranges, fp)
if outfile is not None:
with open(outfile, 'w') as f:
for line in files:
f.write(f"{line}\n")
else:
print("\n".join(files))
sys.exit(0)
|