1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
|
/** \class MuCSCTnPFlatTableProducer MuCSCTnPFlatTableProducer.cc DPGAnalysis/MuonTools/plugins/MuCSCTnPFlatTableProducer.cc
*
* Helper class : the CSC Tag and probe segment efficiency filler
*
* \author M. Herndon (UW Madison)
*
*
*/
#include "DataFormats/DetId/interface/DetId.h"
#include "DataFormats/CSCRecHit/interface/CSCSegment.h"
#include "DataFormats/CSCRecHit/interface/CSCSegmentCollection.h"
#include "DataFormats/MuonDetId/interface/CSCDetId.h"
#include "DataFormats/MuonReco/interface/MuonSelectors.h"
#include "DataFormats/TrackingRecHit/interface/TrackingRecHitFwd.h"
#include "DataFormats/Math/interface/deltaR.h"
#include "TString.h"
#include "TRegexp.h"
#include <iostream>
#include <numeric>
#include <vector>
#include "DPGAnalysis/MuonTools/interface/MuBaseFlatTableProducer.h"
#include "FWCore/Framework/interface/ESHandle.h"
#include "FWCore/ParameterSet/interface/ConfigurationDescriptions.h"
#include "FWCore/ParameterSet/interface/ParameterSetDescription.h"
#include "Geometry/CSCGeometry/interface/CSCGeometry.h"
#include "Geometry/Records/interface/MuonGeometryRecord.h"
#include "DataFormats/MuonReco/interface/Muon.h"
#include "DataFormats/MuonReco/interface/MuonFwd.h"
#include "DataFormats/MuonReco/interface/MuonIsolation.h"
#include "DataFormats/MuonReco/interface/MuonPFIsolation.h"
#include "DataFormats/TrackReco/interface/Track.h"
#include "DataFormats/TrackReco/interface/TrackFwd.h"
#include "DataFormats/VertexReco/interface/Vertex.h"
#include "DataFormats/VertexReco/interface/VertexFwd.h"
#include "DataFormats/Common/interface/TriggerResults.h"
#include "DataFormats/HLTReco/interface/TriggerEvent.h"
#include "DataFormats/HLTReco/interface/TriggerObject.h"
#include "HLTrigger/HLTcore/interface/HLTConfigProvider.h"
#include "RecoMuon/TrackingTools/interface/MuonServiceProxy.h"
#include "TrackingTools/TransientTrack/interface/TransientTrackBuilder.h"
#include "TrackingTools/Records/interface/TransientTrackRecord.h"
#include "TrackingTools/TrajectoryState/interface/TrajectoryStateOnSurface.h"
#include "TrackingTools/GeomPropagators/interface/Propagator.h"
class MuonServiceProxy;
class MuCSCTnPFlatTableProducer : public MuBaseFlatTableProducer {
public:
/// Constructor
MuCSCTnPFlatTableProducer(const edm::ParameterSet&);
/// Fill descriptors
static void fillDescriptions(edm::ConfigurationDescriptions&);
protected:
/// Fill tree branches for a given events
void fillTable(edm::Event&) final;
/// Get info from the ES by run
void getFromES(const edm::Run&, const edm::EventSetup&) final;
/// Get info from the ES for a given event
void getFromES(const edm::EventSetup&) final;
private:
static constexpr Float_t MEZ[6] = {601.3, 696.11, 696.11, 827.56, 936.44, 1025.9};
/// Tokens
nano_mu::EDTokenHandle<reco::MuonCollection> m_muToken;
nano_mu::EDTokenHandle<reco::TrackCollection> m_trackToken;
nano_mu::EDTokenHandle<CSCSegmentCollection> m_cscSegmentToken;
nano_mu::EDTokenHandle<std::vector<reco::Vertex>> m_primaryVerticesToken;
nano_mu::EDTokenHandle<edm::TriggerResults> m_trigResultsToken;
nano_mu::EDTokenHandle<trigger::TriggerEvent> m_trigEventToken;
/// Name of the triggers used by muon filler for trigger matching
std::string m_trigName;
std::string m_isoTrigName;
/// Handles to geometry, detector and specialized objects
/// CSC Geometry
nano_mu::ESTokenHandle<CSCGeometry, MuonGeometryRecord, edm::Transition::BeginRun> m_cscGeometry;
/// Muon service proxy
std::unique_ptr<MuonServiceProxy> m_muonSP;
/// Transient Track Builder
nano_mu::ESTokenHandle<TransientTrackBuilder, TransientTrackRecord> m_transientTrackBuilder;
// Extrapolator to cylinder
edm::ESHandle<Propagator> propagatorAlong;
edm::ESHandle<Propagator> propagatorOpposite;
edm::ESHandle<MagneticField> theBField;
/// HLT config provider
HLTConfigProvider m_hltConfig;
/// Indices of the triggers used by muon filler for trigger matching
std::vector<int> m_trigIndices;
std::vector<int> m_isoTrigIndices;
/// Selection functions
//bool muonTagSelection(const reco::Muon & muon,edm::Handle<std::vector<reco::Track>> tracks);
bool trackProbeSelection(const reco::Track& track, edm::Handle<std::vector<reco::Track>>);
bool muonTagSelection(const reco::Muon&);
//bool trackProbeSelection(const reco::Track & track);
bool zSelection(const reco::Muon&, const reco::Track&);
// Calculation functions
double zMass(const reco::Track&, const reco::Muon&);
double calcDeltaR(double, double, double, double);
double iso(const reco::Track&, edm::Handle<std::vector<reco::Track>>);
// Track extrapolation and segment match functions
TrajectoryStateOnSurface surfExtrapTrkSam(const reco::Track&, double);
FreeTrajectoryState freeTrajStateMuon(const reco::Track&);
UChar_t ringCandidate(Int_t iiStation, Int_t station, Float_t feta, Float_t phi);
UChar_t thisChamberCandidate(UChar_t station, UChar_t ring, Float_t phi);
TrajectoryStateOnSurface* matchTTwithCSCSeg(const reco::Track&,
edm::Handle<CSCSegmentCollection>,
CSCSegmentCollection::const_iterator&,
CSCDetId&);
Float_t TrajectoryDistToSeg(TrajectoryStateOnSurface, CSCSegmentCollection::const_iterator);
std::vector<Float_t> GetEdgeAndDistToGap(const reco::Track&, CSCDetId&);
Float_t YDistToHVDeadZone(Float_t, Int_t);
/// The variables holding
/// the T&P related information
unsigned int m_nZCands; // the # of digis (size of all following vectors)
double _trackIso;
double _muonIso;
double _zMass;
bool hasTrigger(std::vector<int>&,
const trigger::TriggerObjectCollection&,
edm::Handle<trigger::TriggerEvent>&,
const reco::Muon&);
float computeTrkIso(const reco::MuonIsolation&, float);
float computePFIso(const reco::MuonPFIsolation&, float);
};
MuCSCTnPFlatTableProducer::MuCSCTnPFlatTableProducer(const edm::ParameterSet& config)
: MuBaseFlatTableProducer(config),
m_muToken{config, consumesCollector(), "muonSrc"},
m_trackToken{config, consumesCollector(), "trackSrc"},
m_cscSegmentToken{config, consumesCollector(), "cscSegmentSrc"},
m_primaryVerticesToken{config, consumesCollector(), "primaryVerticesSrc"},
m_trigResultsToken{config, consumesCollector(), "trigResultsSrc"},
m_trigEventToken{config, consumesCollector(), "trigEventSrc"},
m_trigName{config.getParameter<std::string>("trigName")},
m_isoTrigName{config.getParameter<std::string>("isoTrigName")},
m_cscGeometry{consumesCollector()},
m_muonSP{std::make_unique<MuonServiceProxy>(config.getParameter<edm::ParameterSet>("ServiceParameters"),
consumesCollector())},
m_transientTrackBuilder{consumesCollector(), "TransientTrackBuilder"} {
produces<nanoaod::FlatTable>();
}
void MuCSCTnPFlatTableProducer::fillDescriptions(edm::ConfigurationDescriptions& descriptions) {
edm::ParameterSetDescription desc;
desc.add<std::string>("name", "cscTnP");
desc.add<edm::InputTag>("muonSrc", edm::InputTag{"muons"});
desc.add<edm::InputTag>("trackSrc", edm::InputTag{"generalTracks"});
desc.add<edm::InputTag>("cscSegmentSrc", edm::InputTag{"cscSegments"});
desc.add<edm::InputTag>("primaryVerticesSrc", edm::InputTag{"offlinePrimaryVertices"});
desc.add<edm::InputTag>("trigEventSrc", edm::InputTag{"hltTriggerSummaryAOD::HLT"});
desc.add<edm::InputTag>("trigResultsSrc", edm::InputTag{"TriggerResults::HLT"});
desc.add<std::string>("trigName", "none");
desc.add<std::string>("isoTrigName", "HLT_IsoMu2*");
desc.setAllowAnything();
descriptions.addWithDefaultLabel(desc);
}
void MuCSCTnPFlatTableProducer::getFromES(const edm::Run& run, const edm::EventSetup& environment) {
m_cscGeometry.getFromES(environment);
bool changed{true};
m_hltConfig.init(run, environment, "HLT", changed);
const bool enableWildcard{true};
TString tName = TString(m_trigName);
TRegexp tNamePattern = TRegexp(tName, enableWildcard);
for (unsigned iPath = 0; iPath < m_hltConfig.size(); ++iPath) {
TString pathName = TString(m_hltConfig.triggerName(iPath));
if (pathName.Contains(tNamePattern))
m_trigIndices.push_back(static_cast<int>(iPath));
}
tName = TString(m_isoTrigName);
tNamePattern = TRegexp(tName, enableWildcard);
for (unsigned iPath = 0; iPath < m_hltConfig.size(); ++iPath) {
TString pathName = TString(m_hltConfig.triggerName(iPath));
if (pathName.Contains(tNamePattern))
m_isoTrigIndices.push_back(static_cast<int>(iPath));
}
}
void MuCSCTnPFlatTableProducer::getFromES(const edm::EventSetup& environment) {
m_transientTrackBuilder.getFromES(environment);
m_muonSP->update(environment);
}
void MuCSCTnPFlatTableProducer::fillTable(edm::Event& ev) {
unsigned int m_nZCands = 0; // the # of digis (size of all following vectors)
// Muon track tag variables
std::vector<float> m_muonPt; // muon pT [GeV/c]
std::vector<float> m_muonPhi; // muon phi [rad]
std::vector<float> m_muonEta; // muon eta
std::vector<float> m_muonPtError; // muon pT [GeV/c] error
std::vector<float> m_muonPhiError; // muon phi [rad] error
std::vector<float> m_muonEtaError; // muon eta error
std::vector<int> m_muonCharge; // muon charge
std::vector<float> m_muonDXY; // muon dXY
std::vector<float> m_muonDZ; // muon dZ
std::vector<int> m_muonTrkHits; // muon track Hits
std::vector<float> m_muonChi2; // muon Chi2
std::vector<bool> m_muonTrigger; // muon trigger
std::vector<float> m_muonIso; // track Iso
// Track probe variabes
std::vector<float> m_trackPt; // track pT [GeV/c]
std::vector<float> m_trackP; // track P [GeV/c]
std::vector<float> m_trackPhi; // track phi [rad]
std::vector<float> m_trackEta; // track eta
std::vector<float> m_trackPtError; // track pT [GeV/c] error
std::vector<float> m_trackPhiError; // track phi [rad] error
std::vector<float> m_trackEtaError; // track eta error
std::vector<int> m_trackCharge; // track charge
std::vector<float> m_trackDXY; // track dXY
std::vector<float> m_trackDZ; // track dZ
std::vector<int> m_trackTrkHits; // track Hits
std::vector<float> m_trackChi2; // track Chi2
std::vector<float> m_trackIso; // track Iso
// Z and global variables
std::vector<float> m_zMass; // z mass
std::vector<float> m_dRTrackMuon; // dR between the track and muon
std::vector<float> m_numberOfPrimaryVertices; // Number of primary Vertices
// CSC chamber information, station encoded in vector
std::vector<int> m_chamberEndcap; // chamber endcap
// station encoded in array index
std::array<std::vector<int>, 4> m_chamberRing; // chamber Ring
std::array<std::vector<int>, 4> m_chamberChamber; // chamber Chamber
std::array<std::vector<int>, 4> m_chamberLayer; // Segment layer information
// Track intersection variables
std::array<std::vector<float>, 4> m_ttIntLocalX; // track trajector intersection local X on stations 1-4
std::array<std::vector<float>, 4> m_ttIntLocalY; // track trajector intersection local Y on stations 1-4
std::array<std::vector<float>, 4> m_ttIntLocalErrorX; // track trajector intersection local X on stations 1-4
std::array<std::vector<float>, 4> m_ttIntLocalErrorY; // track trajector intersection local Y on stations 1-4
std::array<std::vector<float>, 4> m_ttIntLocalW; // track trajector intersection local Wire on stations 1-4
std::array<std::vector<float>, 4> m_ttIntLocalS; // track trajector intersection local Strip on stations 1-4
std::array<std::vector<float>, 4> m_ttIntEta; // track trajector intersection Eta stations 1-4
// Track intersection fiducial information
std::array<std::vector<float>, 4>
m_ttDistToEdge; // track trajector intersection distance to edge, neg is with chamber, on stations 1-4
std::array<std::vector<float>, 4> m_ttDistToHVGap; // track trajector intersection distance to HV GAP on stations 1-4
// Segment location variables
std::array<std::vector<float>, 4> m_segLocalX; // segment local X on stations 1-4
std::array<std::vector<float>, 4> m_segLocalY; // segment local Y on stations 1-4
std::array<std::vector<float>, 4> m_segLocalErrorX; // segment local X error on stations 1-4
std::array<std::vector<float>, 4> m_segLocalErrorY; // segment local Y error on stations 1-4
// track intersection segment residuals variables
std::array<std::vector<float>, 4>
m_ttIntSegResidualLocalX; // track trajector intersection Segment residual local X on stations 1-4
std::array<std::vector<float>, 4>
m_ttIntSegResidualLocalY; // track trajector intersection Segment residuallocal Y on stations 1-4
auto&& propagator_along = m_muonSP->propagator("SteppingHelixPropagatorAlong");
auto&& propagator_opposite = m_muonSP->propagator("SteppingHelixPropagatorOpposite");
propagatorAlong = propagator_along;
propagatorOpposite = propagator_opposite;
theBField = m_muonSP->magneticField();
auto muons = m_muToken.conditionalGet(ev);
auto tracks = m_trackToken.conditionalGet(ev);
auto segments = m_cscSegmentToken.conditionalGet(ev);
auto primaryVertices = m_primaryVerticesToken.conditionalGet(ev);
auto triggerResults = m_trigResultsToken.conditionalGet(ev);
auto triggerEvent = m_trigEventToken.conditionalGet(ev);
if (muons.isValid() && tracks.isValid() && segments.isValid() && primaryVertices.isValid() &&
m_transientTrackBuilder.isValid()) {
for (const auto& muon : (*muons)) {
if (!muonTagSelection(muon))
continue;
bool muonTrigger = false;
if (triggerResults.isValid() && triggerEvent.isValid()) {
const auto& triggerObjects = triggerEvent->getObjects();
muonTrigger = (hasTrigger(m_isoTrigIndices, triggerObjects, triggerEvent, muon) ||
hasTrigger(m_trigIndices, triggerObjects, triggerEvent, muon));
}
for (const auto& track : (*tracks)) {
if (!trackProbeSelection(track, tracks))
continue;
if (!zSelection(muon, track))
continue;
//std::cout << "Z candidate found: " << _zMass << " track eta: " << track.eta() << std::endl;
//std::cout.flush();
m_nZCands++;
m_trackPt.push_back(track.pt());
m_trackP.push_back(track.p());
m_trackEta.push_back(track.eta());
m_trackPhi.push_back(track.phi());
m_trackPtError.push_back(track.pt());
m_trackEtaError.push_back(track.eta());
m_trackPhiError.push_back(track.phi());
m_trackCharge.push_back(track.charge());
m_trackDXY.push_back(track.dxy());
m_trackDZ.push_back(track.dz());
m_trackTrkHits.push_back(track.hitPattern().numberOfValidTrackerHits());
m_trackChi2.push_back(track.normalizedChi2());
m_trackIso.push_back(_trackIso);
m_muonPt.push_back(muon.track()->pt());
m_muonPhi.push_back(muon.track()->phi());
m_muonEta.push_back(muon.track()->eta());
m_muonPtError.push_back(muon.track()->ptError());
m_muonPhiError.push_back(muon.track()->phiError());
m_muonEtaError.push_back(muon.track()->etaError());
m_muonCharge.push_back(muon.charge());
m_muonDXY.push_back(muon.track()->dxy());
m_muonDZ.push_back(muon.track()->dz());
m_muonTrkHits.push_back(muon.track()->hitPattern().numberOfValidTrackerHits());
m_muonChi2.push_back(muon.track()->normalizedChi2());
m_muonIso.push_back(computeTrkIso(muon.isolationR03(), muon.pt()));
m_muonTrigger.push_back(muonTrigger);
m_zMass.push_back(_zMass);
double_t dR = calcDeltaR(track.eta(), muon.eta(), track.phi(), muon.phi());
//double_t dR = 1.0;
m_dRTrackMuon.push_back(dR);
const reco::VertexCollection& vertices = *primaryVertices.product();
m_numberOfPrimaryVertices.push_back(vertices.size());
bool ec = (track.eta() > 0);
UChar_t endcapCSC = ec ? 0 : 1;
m_chamberEndcap.push_back(endcapCSC * 1);
Int_t iiStationFail = 0;
Int_t iiStation0Pass = 0;
for (int iiStationZ = 0; iiStationZ < 6; iiStationZ++) {
UChar_t stationCSC = iiStationZ > 2 ? iiStationZ - 2 : 0;
UChar_t ringCSC = 0;
// Could monitor this problem here if necessary;
if (stationCSC == 0 && iiStation0Pass > 0)
continue;
TrajectoryStateOnSurface tsos = surfExtrapTrkSam(track, ec ? MEZ[iiStationZ] : -MEZ[iiStationZ]);
if (tsos.isValid()) {
Float_t trkEta = tsos.globalPosition().eta(), trkPhi = tsos.globalPosition().phi();
ringCSC = ringCandidate(iiStationZ, stationCSC + 1, trkEta, trkPhi);
if (ringCSC) {
UChar_t chamberCSC = thisChamberCandidate(stationCSC + 1, ringCSC, track.phi()) - 1;
CSCDetId Layer3id = CSCDetId(endcapCSC + 1, stationCSC + 1, ringCSC, chamberCSC + 1, 3);
CSCDetId Layer0Id = CSCDetId(endcapCSC + 1,
stationCSC + 1,
ringCSC,
chamberCSC + 1,
0); //layer 0 is the mid point of the chamber. It is not a real layer.
// !!!!! need to fix Layer0Id problem with ME1/1 here
const BoundPlane& Layer3Surface = m_cscGeometry->idToDet(Layer3id)->surface();
tsos = surfExtrapTrkSam(track, Layer3Surface.position().z());
if (tsos.isValid()) {
if (stationCSC == 0)
iiStation0Pass++;
// Fill track intersection denominator information
LocalPoint localTTIntPoint = Layer3Surface.toLocal(tsos.freeState()->position());
const CSCLayerGeometry* layerGeoma = m_cscGeometry->chamber(Layer0Id)->layer(3)->geometry();
const CSCLayerGeometry* layerGeomb = m_cscGeometry->chamber(Layer0Id)->layer(4)->geometry();
m_chamberRing[stationCSC].push_back(ringCSC);
m_chamberChamber[stationCSC].push_back(chamberCSC);
m_ttIntLocalX[stationCSC].push_back(localTTIntPoint.x());
m_ttIntLocalY[stationCSC].push_back(localTTIntPoint.y());
m_ttIntLocalW[stationCSC].push_back(
(layerGeoma->nearestWire(localTTIntPoint) + layerGeomb->nearestWire(localTTIntPoint)) / 2.0);
m_ttIntLocalS[stationCSC].push_back(
(layerGeoma->strip(localTTIntPoint) + layerGeomb->strip(localTTIntPoint)) / 2.0);
m_ttIntEta[stationCSC].push_back(trkEta);
// Errors are those of the track intersection, chosing the plane and exact geomentry is performed in the function
Float_t CSCProjEdgeDist = -9999.0;
Float_t ttIntLocalErrorX = -9999.0;
Float_t CSCDyProjHVGap = 9999.0;
Float_t ttIntLocalErrorY = -9999.0;
for (Int_t ly = 1; ly < 7; ly++) {
CSCDetId Layerid = CSCDetId(endcapCSC + 1, stationCSC + 1, ringCSC, chamberCSC + 1, ly);
std::vector<Float_t> EdgeAndDistToGap(GetEdgeAndDistToGap(
track, Layerid)); //values: 1-edge;2-err of edge;3-disttogap;4-err of dist to gap
if (EdgeAndDistToGap[0] > CSCProjEdgeDist) {
CSCProjEdgeDist = EdgeAndDistToGap[0];
ttIntLocalErrorX = EdgeAndDistToGap[1];
}
if (EdgeAndDistToGap[2] < CSCDyProjHVGap) {
CSCDyProjHVGap = EdgeAndDistToGap[2];
ttIntLocalErrorY = EdgeAndDistToGap[3];
}
}
m_ttDistToEdge[stationCSC].push_back(CSCProjEdgeDist);
m_ttDistToHVGap[stationCSC].push_back(CSCDyProjHVGap);
m_ttIntLocalErrorX[stationCSC].push_back(ttIntLocalErrorX);
m_ttIntLocalErrorY[stationCSC].push_back(ttIntLocalErrorY);
// now we have a local point for comparison to segments
CSCSegmentCollection::const_iterator cscSegOut;
TrajectoryStateOnSurface* TrajToSeg = matchTTwithCSCSeg(track, segments, cscSegOut, Layer3id);
if (TrajToSeg == nullptr) {
// fill Null Num
m_segLocalX[stationCSC].push_back(-9999.0);
m_segLocalY[stationCSC].push_back(-9999.0);
m_segLocalErrorX[stationCSC].push_back(0.0);
m_segLocalErrorY[stationCSC].push_back(0.0);
m_ttIntSegResidualLocalX[stationCSC].push_back(-9990.0);
m_ttIntSegResidualLocalY[stationCSC].push_back(-9990.0);
m_chamberLayer[stationCSC].push_back(-9);
continue;
}
LocalPoint localSegmentPoint = (*cscSegOut).localPosition();
LocalError localSegErr = (*cscSegOut).localPositionError();
m_segLocalX[stationCSC].push_back(localSegmentPoint.x());
m_segLocalY[stationCSC].push_back(localSegmentPoint.y());
m_segLocalErrorX[stationCSC].push_back(sqrt(localSegErr.xx()));
m_segLocalErrorY[stationCSC].push_back(sqrt(localSegErr.yy()));
m_ttIntSegResidualLocalX[stationCSC].push_back(localTTIntPoint.x() - localSegmentPoint.x());
m_ttIntSegResidualLocalY[stationCSC].push_back(localTTIntPoint.y() - localSegmentPoint.y());
/* Extract layers for hits */
int layers = 0;
for (std::vector<CSCRecHit2D>::const_iterator itRH = cscSegOut->specificRecHits().begin();
itRH != cscSegOut->specificRecHits().end();
++itRH) {
const CSCRecHit2D* recHit = &(*itRH);
int layer = recHit->cscDetId().layer();
layers |= 1 << (layer - 1);
}
m_chamberLayer[stationCSC].push_back(layers);
} // end preliminary tsos is valid
} // end found ring CSC
} // end refined tsos is valid
if ((!tsos.isValid()) || (ringCSC == 0)) {
// only fill Null denominator once for station 1, iiStation Z = 0,1,2
if (iiStationZ <= 2)
iiStationFail++;
if (iiStationZ > 2 || iiStationFail == 3) {
// fill Null Den Num
m_chamberRing[stationCSC].push_back(-9);
m_chamberChamber[stationCSC].push_back(-9);
m_ttIntLocalX[stationCSC].push_back(-9999.0);
m_ttIntLocalY[stationCSC].push_back(-9999.0);
m_ttIntLocalErrorX[stationCSC].push_back(0.0);
m_ttIntLocalErrorY[stationCSC].push_back(0.0);
m_ttIntLocalW[stationCSC].push_back(-9999.0);
m_ttIntLocalS[stationCSC].push_back(-9999.0);
m_ttIntEta[stationCSC].push_back(-9999.0);
m_ttDistToEdge[stationCSC].push_back(-9999.0);
m_ttDistToHVGap[stationCSC].push_back(-9999.9);
m_segLocalX[stationCSC].push_back(-9999.0);
m_segLocalY[stationCSC].push_back(-9999.0);
m_segLocalErrorX[stationCSC].push_back(0.0);
m_segLocalErrorY[stationCSC].push_back(0.0);
m_ttIntSegResidualLocalX[stationCSC].push_back(-9990.0);
m_ttIntSegResidualLocalY[stationCSC].push_back(-9990.0);
m_chamberLayer[stationCSC].push_back(-9);
}
}
} // end loop over CSC Z planes
} // endl loop over tracks
} // end loop over muons
} // End if good physics objects
// if (m_nZCands>0) {
auto table = std::make_unique<nanoaod::FlatTable>(m_nZCands, m_name, false, false);
table->setDoc("CSC Tag & Probe segment efficiency information");
addColumn(table, "muonPt", m_muonPt, "muon pt [GeV/c]");
addColumn(table, "muonPhi", m_muonPhi, "muon phi [rad]");
addColumn(table, "muonEta", m_muonEta, "muon eta");
addColumn(table, "muonPtError", m_muonPtError, "muon pt error [GeV/c]");
addColumn(table, "muonPhiError", m_muonPhiError, "muon phi error [rad]");
addColumn(table, "muonEtaError", m_muonEtaError, "muon eta error");
addColumn(table, "muonCharge", m_muonCharge, "muon charge");
addColumn(table, "muonDXY", m_muonDXY, "muon dXY [cm]");
addColumn(table, "muonDZ", m_muonDZ, "muon dZ [cm]");
addColumn(table, "muonTrkHits", m_muonTrkHits, "muon track hits");
addColumn(table, "muonChi2", m_muonChi2, "muon chi2");
addColumn(table, "muonIso", m_trackIso, "muon relative iso");
addColumn(table, "muonTrigger", m_muonTrigger, "muon has trigger bool");
addColumn(table, "trackPt", m_trackPt, "track pt [GeV/c]");
addColumn(table, "trackP", m_trackPt, "track p [GeV/c]");
addColumn(table, "trackPhi", m_trackPhi, "track phi [rad]");
addColumn(table, "trackEta", m_trackEta, "track eta");
addColumn(table, "trackPtError", m_trackPtError, "track pt error [GeV/c]");
addColumn(table, "trackPhiError", m_trackPhiError, "track phi error [rad]");
addColumn(table, "trackEtaError", m_trackEtaError, "track eta error");
addColumn(table, "trackCharge", m_trackCharge, "track charge");
addColumn(table, "trackDXY", m_trackDXY, "track dXY [cm]");
addColumn(table, "trackDZ", m_trackDZ, "track dZ [cm]");
addColumn(table, "trackTrkHits", m_trackTrkHits, "track track hits");
addColumn(table, "trackChi2", m_trackChi2, "track chi2");
addColumn(table, "trackIso", m_trackIso, "track relative iso");
addColumn(table, "zMass", m_zMass, "Z mass [GeV/c^2]");
addColumn(table, "dRTrackMuon", m_dRTrackMuon, "dR between track and muon");
addColumn(table, "numberOfPrimaryVertidies", m_numberOfPrimaryVertices, "Number of PVs");
addColumn(table, "chamberEndcap", m_chamberEndcap, "");
addColumn(table, "chamberRing1", m_chamberRing[0], "");
addColumn(table, "chamberRing2", m_chamberRing[1], "");
addColumn(table, "chamberRing3", m_chamberRing[2], "");
addColumn(table, "chamberRing4", m_chamberRing[3], "");
addColumn(table, "chamberChamber1", m_chamberChamber[0], "");
addColumn(table, "chamberChamber2", m_chamberChamber[1], "");
addColumn(table, "chamberChamber3", m_chamberChamber[2], "");
addColumn(table, "chamberChamber4", m_chamberChamber[3], "");
addColumn(table, "chamberLayer1", m_chamberLayer[0], "");
addColumn(table, "chamberLayer2", m_chamberLayer[1], "");
addColumn(table, "chamberLayer3", m_chamberLayer[2], "");
addColumn(table, "chamberLayer4", m_chamberLayer[3], "");
addColumn(table, "ttIntLocalX1", m_ttIntLocalX[0], "");
addColumn(table, "ttIntLocalX2", m_ttIntLocalX[1], "");
addColumn(table, "ttIntLocalX3", m_ttIntLocalX[2], "");
addColumn(table, "ttIntLocalX4", m_ttIntLocalX[3], "");
addColumn(table, "ttIntLocalY1", m_ttIntLocalY[0], "");
addColumn(table, "ttIntLocalY2", m_ttIntLocalY[1], "");
addColumn(table, "ttIntLocalY3", m_ttIntLocalY[2], "");
addColumn(table, "ttIntLocalY4", m_ttIntLocalY[3], "");
addColumn(table, "ttIntLocalErrorX1", m_ttIntLocalErrorX[0], "");
addColumn(table, "ttIntLocalErrorX2", m_ttIntLocalErrorX[1], "");
addColumn(table, "ttIntLocalErrorX3", m_ttIntLocalErrorX[2], "");
addColumn(table, "ttIntLocalErrorX4", m_ttIntLocalErrorX[3], "");
addColumn(table, "ttIntLocalErrorY1", m_ttIntLocalErrorY[0], "");
addColumn(table, "ttIntLocalErrorY2", m_ttIntLocalErrorY[1], "");
addColumn(table, "ttIntLocalErrorY3", m_ttIntLocalErrorY[2], "");
addColumn(table, "ttIntLocalErrorY4", m_ttIntLocalErrorY[3], "");
addColumn(table, "ttIntLocalW1", m_ttIntLocalW[0], "");
addColumn(table, "ttIntLocalW2", m_ttIntLocalW[1], "");
addColumn(table, "ttIntLocalW3", m_ttIntLocalW[2], "");
addColumn(table, "ttIntLocalW4", m_ttIntLocalW[3], "");
addColumn(table, "ttIntLocalS1", m_ttIntLocalS[0], "");
addColumn(table, "ttIntLocalS2", m_ttIntLocalS[1], "");
addColumn(table, "ttIntLocalS3", m_ttIntLocalS[2], "");
addColumn(table, "ttIntLocalS4", m_ttIntLocalS[3], "");
addColumn(table, "ttIntEta1", m_ttIntEta[0], "");
addColumn(table, "ttIntEta2", m_ttIntEta[1], "");
addColumn(table, "ttIntEta3", m_ttIntEta[2], "");
addColumn(table, "ttIntEta4", m_ttIntEta[3], "");
addColumn(table, "ttDistToEdge1", m_ttDistToEdge[0], "");
addColumn(table, "ttDistToEdge2", m_ttDistToEdge[1], "");
addColumn(table, "ttDistToEdge3", m_ttDistToEdge[2], "");
addColumn(table, "ttDistToEdge4", m_ttDistToEdge[3], "");
addColumn(table, "ttDistToHVGap1", m_ttDistToHVGap[0], "");
addColumn(table, "ttDistToHVGap2", m_ttDistToHVGap[1], "");
addColumn(table, "ttDistToHVGap3", m_ttDistToHVGap[2], "");
addColumn(table, "ttDistToHVGap4", m_ttDistToHVGap[3], "");
addColumn(table, "segLocalX1", m_segLocalX[0], "");
addColumn(table, "segLocalX2", m_segLocalX[1], "");
addColumn(table, "segLocalX3", m_segLocalX[2], "");
addColumn(table, "segLocalX4", m_segLocalX[3], "");
addColumn(table, "segLocalY1", m_segLocalY[0], "");
addColumn(table, "segLocalY2", m_segLocalY[1], "");
addColumn(table, "segLocalY3", m_segLocalY[2], "");
addColumn(table, "segLocalY4", m_segLocalY[3], "");
addColumn(table, "segLocalErrorX1", m_segLocalErrorX[0], "");
addColumn(table, "segLocalErrorX2", m_segLocalErrorX[1], "");
addColumn(table, "segLocalErrorX3", m_segLocalErrorX[2], "");
addColumn(table, "segLocalErrorX4", m_segLocalErrorX[3], "");
addColumn(table, "segLocalErrorY1", m_segLocalErrorY[0], "");
addColumn(table, "segLocalErrorY2", m_segLocalErrorY[1], "");
addColumn(table, "segLocalErrorY3", m_segLocalErrorY[2], "");
addColumn(table, "segLocalErrorY4", m_segLocalErrorY[3], "");
addColumn(table, "ttIntSegResidualLocalX1", m_ttIntSegResidualLocalX[0], "");
addColumn(table, "ttIntSegResidualLocalX2", m_ttIntSegResidualLocalX[1], "");
addColumn(table, "ttIntSegResidualLocalX3", m_ttIntSegResidualLocalX[2], "");
addColumn(table, "ttIntSegResidualLocalX4", m_ttIntSegResidualLocalX[3], "");
addColumn(table, "ttIntSegResidualLocalY1", m_ttIntSegResidualLocalY[0], "");
addColumn(table, "ttIntSegResidualLocalY2", m_ttIntSegResidualLocalY[1], "");
addColumn(table, "ttIntSegResidualLocalY3", m_ttIntSegResidualLocalY[2], "");
addColumn(table, "ttIntSegResidualLocalY4", m_ttIntSegResidualLocalY[3], "");
ev.put(std::move(table));
}
float MuCSCTnPFlatTableProducer::computeTrkIso(const reco::MuonIsolation& isolation, float muonPt) {
return isolation.sumPt / muonPt;
}
float MuCSCTnPFlatTableProducer::computePFIso(const reco::MuonPFIsolation& pfIsolation, float muonPt) {
return (pfIsolation.sumChargedHadronPt +
std::max(0., pfIsolation.sumNeutralHadronEt + pfIsolation.sumPhotonEt - 0.5 * pfIsolation.sumPUPt)) /
muonPt;
}
bool MuCSCTnPFlatTableProducer::hasTrigger(std::vector<int>& trigIndices,
const trigger::TriggerObjectCollection& trigObjs,
edm::Handle<trigger::TriggerEvent>& trigEvent,
const reco::Muon& muon) {
float dRMatch = 999.;
for (int trigIdx : trigIndices) {
const std::vector<std::string> trigModuleLabels = m_hltConfig.moduleLabels(trigIdx);
const unsigned trigModuleIndex =
std::find(trigModuleLabels.begin(), trigModuleLabels.end(), "hltBoolEnd") - trigModuleLabels.begin() - 1;
const unsigned hltFilterIndex = trigEvent->filterIndex(edm::InputTag(trigModuleLabels[trigModuleIndex], "", "HLT"));
if (hltFilterIndex < trigEvent->sizeFilters()) {
const trigger::Keys keys = trigEvent->filterKeys(hltFilterIndex);
const trigger::Vids vids = trigEvent->filterIds(hltFilterIndex);
const unsigned nTriggers = vids.size();
for (unsigned iTrig = 0; iTrig < nTriggers; ++iTrig) {
trigger::TriggerObject trigObj = trigObjs[keys[iTrig]];
float dR = deltaR(muon, trigObj);
if (dR < dRMatch)
dRMatch = dR;
}
}
}
return dRMatch < 0.1; //CB should get it programmable
}
//bool MuCSCTnPFlatTableProducer::muonTagSelection(const reco::Muon & muon,edm::Handle<std::vector<reco::Track>> tracks)
bool MuCSCTnPFlatTableProducer::muonTagSelection(const reco::Muon& muon) {
float ptCut = 10.0;
int trackerHitsCut = 8;
float dxyCut = 2.0;
float dzCut = 24.0;
float chi2Cut = 4.0;
bool selected = false;
//_muonIso = iso(*muon.track(),tracks);
_muonIso = computePFIso(muon.pfIsolationR04(), muon.pt());
if (!muon.isTrackerMuon())
return false;
if (!muon.track().isNonnull())
return false;
selected =
((muon.track()->pt() > ptCut) && (muon.track()->hitPattern().numberOfValidTrackerHits() >= trackerHitsCut) &&
(muon.track()->dxy() < dxyCut) && (std::abs(muon.track()->dz()) < dzCut) &&
(muon.track()->normalizedChi2() < chi2Cut) && _muonIso < 0.1);
return selected;
}
bool MuCSCTnPFlatTableProducer::trackProbeSelection(const reco::Track& track,
edm::Handle<std::vector<reco::Track>> tracks) {
float ptCut = 10.0;
int trackerHitsCut = 8;
float dxyCut = 2.0;
float dzCut = 24.0;
float chi2Cut = 4.0;
bool selected = false;
_trackIso = iso(track, tracks);
selected =
((track.pt() > ptCut) && (std::abs(track.eta()) > 0.75) && (std::abs(track.eta()) < 2.55) &&
(track.numberOfValidHits() >= trackerHitsCut) && (track.dxy() < dxyCut) && (std::abs(track.dz()) < dzCut) &&
(track.normalizedChi2() > 0.0) && (track.normalizedChi2() < chi2Cut) && _trackIso < 0.1);
return selected;
}
bool MuCSCTnPFlatTableProducer::zSelection(const reco::Muon& muon, const reco::Track& track) {
bool selected = false;
_zMass = zMass(track, muon);
selected = (track.charge() * muon.charge() == -1 && (_zMass > 75.0) && (_zMass < 120.0));
return selected;
}
// get track position at a particular (xy) plane given its z
TrajectoryStateOnSurface MuCSCTnPFlatTableProducer::surfExtrapTrkSam(const reco::Track& track, double z) {
Plane::PositionType pos(0, 0, z);
Plane::RotationType rot;
Plane::PlanePointer myPlane = Plane::build(pos, rot);
FreeTrajectoryState recoStart = freeTrajStateMuon(track);
TrajectoryStateOnSurface recoProp = propagatorAlong->propagate(recoStart, *myPlane);
if (!recoProp.isValid())
recoProp = propagatorOpposite->propagate(recoStart, *myPlane);
return recoProp;
}
FreeTrajectoryState MuCSCTnPFlatTableProducer::freeTrajStateMuon(const reco::Track& track) {
//no track extras in nanoaod so directly use vx and p
GlobalPoint innerPoint(track.vx(), track.vy(), track.vz());
GlobalVector innerVec(track.px(), track.py(), track.pz());
GlobalTrajectoryParameters gtPars(innerPoint, innerVec, track.charge(), &*theBField);
AlgebraicSymMatrix66 cov;
cov *= 1e-20;
CartesianTrajectoryError tCov(cov);
return (cov.kRows == 6 ? FreeTrajectoryState(gtPars, tCov) : FreeTrajectoryState(gtPars));
}
UChar_t MuCSCTnPFlatTableProducer::ringCandidate(Int_t iiStation, Int_t station, Float_t feta, Float_t phi) {
UChar_t ring = 0;
switch (station) {
case 1:
if (std::abs(feta) >= 0.85 && std::abs(feta) < 1.18) { //ME13
if (iiStation == 2)
ring = 3;
return ring;
}
if (std::abs(feta) >= 1.18 &&
std::abs(feta) <= 1.5) { //ME12 if(std::abs(feta)>1.18 && std::abs(feta)<1.7){//ME12
if (iiStation == 1)
ring = 2;
return ring;
}
if (std::abs(feta) > 1.5 && std::abs(feta) < 2.1) { //ME11
if (iiStation == 0)
ring = 1;
return ring;
}
if (std::abs(feta) >= 2.1 && std::abs(feta) < 2.45) { //ME11
if (iiStation == 0)
ring = 4;
return ring;
}
break;
case 2:
if (std::abs(feta) > 0.95 && std::abs(feta) < 1.6) { //ME22
ring = 2;
return ring;
}
if (std::abs(feta) > 1.55 && std::abs(feta) < 2.45) { //ME21
ring = 1;
return ring;
}
break;
case 3:
if (std::abs(feta) > 1.08 && std::abs(feta) < 1.72) { //ME32
ring = 2;
return ring;
}
if (std::abs(feta) > 1.69 && std::abs(feta) < 2.45) { //ME31
ring = 1;
return ring;
}
break;
case 4:
if (std::abs(feta) > 1.78 && std::abs(feta) < 2.45) { //ME41
ring = 1;
return ring;
}
if (std::abs(feta) > 1.15 && std::abs(feta) <= 1.78) { //ME42
ring = 2;
return ring;
}
break;
default:
edm::LogError("") << "Invalid station: " << station << std::endl;
break;
}
return 0;
}
UChar_t MuCSCTnPFlatTableProducer::thisChamberCandidate(UChar_t station, UChar_t ring, Float_t phi) {
// cout <<"\t\t TPTrackMuonSys::thisChamberCandidate..."<<endl;
//search for chamber candidate based on CMS IN-2007/024
//10 deg chambers are ME1,ME22,ME32,ME42 chambers; 20 deg chambers are ME21,31,41 chambers
//Chambers one always starts from approx -5 deg.
const UChar_t nVal = (station > 1 && ring == 1) ? 18 : 36;
const Float_t ChamberSpan = 2 * M_PI / nVal;
Float_t dphi = phi + M_PI / 36;
while (dphi >= 2 * M_PI)
dphi -= 2 * M_PI;
while (dphi < 0)
dphi += 2 * M_PI;
UChar_t ChCand = floor(dphi / ChamberSpan) + 1;
return ChCand > nVal ? nVal : ChCand;
}
Float_t MuCSCTnPFlatTableProducer::TrajectoryDistToSeg(TrajectoryStateOnSurface TrajSuf,
CSCSegmentCollection::const_iterator segIt) {
if (!TrajSuf.isValid())
return 9999.;
const GeomDet* gdet = m_cscGeometry->idToDet((CSCDetId)(*segIt).cscDetId());
LocalPoint localTTPos = gdet->surface().toLocal(TrajSuf.freeState()->position());
LocalPoint localSegPos = (*segIt).localPosition();
Float_t CSCdeltaX = localSegPos.x() - localTTPos.x();
Float_t CSCdeltaY = localSegPos.y() - localTTPos.y();
return sqrt(pow(CSCdeltaX, 2) + pow(CSCdeltaY, 2));
}
TrajectoryStateOnSurface* MuCSCTnPFlatTableProducer::matchTTwithCSCSeg(const reco::Track& track,
edm::Handle<CSCSegmentCollection> cscSegments,
CSCSegmentCollection::const_iterator& cscSegOut,
CSCDetId& idCSC) {
TrajectoryStateOnSurface* TrajSuf = nullptr;
Float_t deltaCSCR = 9999.;
for (CSCSegmentCollection::const_iterator segIt = cscSegments->begin(); segIt != cscSegments->end(); segIt++) {
CSCDetId id = (CSCDetId)(*segIt).cscDetId();
if (idCSC.endcap() != id.endcap())
continue;
if (idCSC.station() != id.station())
continue;
if (idCSC.chamber() != id.chamber())
continue;
Bool_t ed1 =
(idCSC.station() == 1) && ((idCSC.ring() == 1 || idCSC.ring() == 4) && (id.ring() == 1 || id.ring() == 4));
Bool_t ed2 =
(idCSC.station() == 1) && ((idCSC.ring() == 2 && id.ring() == 2) || (idCSC.ring() == 3 && id.ring() == 3));
Bool_t ed3 = (idCSC.station() != 1) && (idCSC.ring() == id.ring());
Bool_t TMCSCMatch = (ed1 || ed2 || ed3);
if (!TMCSCMatch)
continue;
const CSCChamber* cscchamber = m_cscGeometry->chamber(id);
if (!cscchamber)
continue;
TrajectoryStateOnSurface TrajSuf_ = surfExtrapTrkSam(track, cscchamber->toGlobal((*segIt).localPosition()).z());
Float_t dR_ = std::abs(TrajectoryDistToSeg(TrajSuf_, segIt));
if (dR_ < deltaCSCR) {
delete TrajSuf;
TrajSuf = new TrajectoryStateOnSurface(TrajSuf_);
deltaCSCR = dR_;
cscSegOut = segIt;
}
} //loop over segments
return TrajSuf;
}
std::vector<Float_t> MuCSCTnPFlatTableProducer::GetEdgeAndDistToGap(const reco::Track& track, CSCDetId& detid) {
std::vector<Float_t> result(4, 9999.);
result[3] = -9999;
const GeomDet* gdet = m_cscGeometry->idToDet(detid);
TrajectoryStateOnSurface tsos = surfExtrapTrkSam(track, gdet->surface().position().z());
if (!tsos.isValid())
return result;
LocalPoint localTTPos = gdet->surface().toLocal(tsos.freeState()->position());
const CSCWireTopology* wireTopology = m_cscGeometry->layer(detid)->geometry()->wireTopology();
Float_t wideWidth = wireTopology->wideWidthOfPlane();
Float_t narrowWidth = wireTopology->narrowWidthOfPlane();
Float_t length = wireTopology->lengthOfPlane();
// If slanted, there is no y offset between local origin and symmetry center of wire plane
Float_t yOfFirstWire = std::abs(wireTopology->wireAngle()) > 1.E-06 ? -0.5 * length : wireTopology->yOfWire(1);
// y offset between local origin and symmetry center of wire plane
Float_t yCOWPOffset = yOfFirstWire + 0.5 * length;
// tangent of the incline angle from inside the trapezoid
Float_t tangent = (wideWidth - narrowWidth) / (2. * length);
// y position wrt bottom of trapezoid
Float_t yPrime = localTTPos.y() + std::abs(yOfFirstWire);
// half trapezoid width at y' is 0.5 * narrowWidth + x side of triangle with the above tangent and side y'
Float_t halfWidthAtYPrime = 0.5 * narrowWidth + yPrime * tangent;
// x offset between local origin and symmetry center of wire plane is zero
// x offset of ME11s is also zero. x center of wire groups is not at zero, because it is not parallel to x. The wire groups of ME11s have a complex geometry, see the code in m_debug.
Float_t edgex = std::abs(localTTPos.x()) - halfWidthAtYPrime;
Float_t edgey = std::abs(localTTPos.y() - yCOWPOffset) - 0.5 * length;
LocalError localTTErr = tsos.localError().positionError();
if (edgex > edgey) {
result[0] = edgex;
result[1] = sqrt(localTTErr.xx());
//result[1] = sqrt(tsos.cartesianError().position().cxx());
} else {
result[0] = edgey;
result[1] = sqrt(localTTErr.yy());
//result[1] = sqrt(tsos.cartesianError().position().cyy());
}
result[2] = YDistToHVDeadZone(localTTPos.y(), detid.station() * 10 + detid.ring());
result[3] = sqrt(localTTErr.yy());
return result; //return values: 1-edge;2-err of edge;3-disttogap;4-err of dist to gap
}
//deadzone center is according to http://cmssdt.cern.ch/SDT/lxr/source/RecoLocalMuon/CSCEfficiency/src/CSCEfficiency.cc#605
//wire spacing is according to CSCTDR
Float_t MuCSCTnPFlatTableProducer::YDistToHVDeadZone(Float_t yLocal, Int_t StationAndRing) {
//the ME11 wires are not parallel to x, but no gap
//chamber edges are not included.
const Float_t deadZoneCenterME1_2[2] = {-32.88305, 32.867423};
const Float_t deadZoneCenterME1_3[2] = {-22.7401, 27.86665};
const Float_t deadZoneCenterME2_1[2] = {-27.47, 33.67};
const Float_t deadZoneCenterME3_1[2] = {-36.21, 23.68};
const Float_t deadZoneCenterME4_1[2] = {-26.14, 23.85};
const Float_t deadZoneCenterME234_2[4] = {-81.8744, -21.18165, 39.51105, 100.2939};
const Float_t* deadZoneCenter;
Float_t deadZoneHeightHalf = 0.32 * 7 / 2; // wire spacing * (wires missing + 1)/2
Float_t minY = 999999.;
UChar_t nGaps = 2;
switch (std::abs(StationAndRing)) {
case 11:
case 14:
return 162; //the height of ME11
break;
case 12:
deadZoneCenter = deadZoneCenterME1_2;
break;
case 13:
deadZoneCenter = deadZoneCenterME1_3;
break;
case 21:
deadZoneCenter = deadZoneCenterME2_1;
break;
case 31:
deadZoneCenter = deadZoneCenterME3_1;
break;
case 41:
deadZoneCenter = deadZoneCenterME4_1;
break;
default:
deadZoneCenter = deadZoneCenterME234_2;
nGaps = 4;
}
for (UChar_t iGap = 0; iGap < nGaps; iGap++) {
Float_t newMinY = yLocal < deadZoneCenter[iGap] ? deadZoneCenter[iGap] - deadZoneHeightHalf - yLocal
: yLocal - (deadZoneCenter[iGap] + deadZoneHeightHalf);
if (newMinY < minY)
minY = newMinY;
}
return minY;
}
double MuCSCTnPFlatTableProducer::iso(const reco::Track& track, edm::Handle<std::vector<reco::Track>> tracks) {
double isoSum = 0.0;
for (const auto& track2 : (*tracks)) {
double dR = calcDeltaR(track.eta(), track2.eta(), track.phi(), track2.phi());
if (track2.pt() > 1.0 && dR > 0.001 && dR < 0.3)
isoSum += track2.pt();
}
return isoSum / track.pt();
}
double MuCSCTnPFlatTableProducer::calcDeltaR(double eta1, double eta2, double phi1, double phi2) {
double deta = eta1 - eta2;
if (phi1 < 0)
phi1 += 2.0 * M_PI;
if (phi2 < 0)
phi2 += 2.0 * M_PI;
double dphi = phi1 - phi2;
if (dphi > M_PI)
dphi -= 2. * M_PI;
else if (dphi < -M_PI)
dphi += 2. * M_PI;
return std::sqrt(deta * deta + dphi * dphi);
}
double MuCSCTnPFlatTableProducer::zMass(const reco::Track& track, const reco::Muon& muon) {
double zMass = -99.0;
double mMu = 0.1134289256;
zMass = std::pow((std::sqrt(std::pow(muon.p(), 2) + mMu * mMu) + std::sqrt(std::pow(track.p(), 2) + mMu * mMu)), 2) -
(std::pow((muon.px() + track.px()), 2) + std::pow((muon.py() + track.py()), 2) +
std::pow((muon.pz() + track.pz()), 2));
return std::sqrt(zMass);
}
#include "FWCore/PluginManager/interface/ModuleDef.h"
#include "FWCore/Framework/interface/MakerMacros.h"
DEFINE_FWK_MODULE(MuCSCTnPFlatTableProducer);
|