MuCSCTnPFlatTableProducer

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/** \class MuCSCTnPFlatTableProducer MuCSCTnPFlatTableProducer.cc DPGAnalysis/MuonTools/plugins/MuCSCTnPFlatTableProducer.cc
 *  
 * Helper class : the CSC Tag and probe segment efficiency  filler
 *
 * \author M. Herndon (UW Madison)
 *
 *
 */

#include "DataFormats/DetId/interface/DetId.h"
#include "DataFormats/CSCRecHit/interface/CSCSegment.h"
#include "DataFormats/CSCRecHit/interface/CSCSegmentCollection.h"
#include "DataFormats/MuonDetId/interface/CSCDetId.h"

#include "DataFormats/MuonReco/interface/MuonSelectors.h"
#include "DataFormats/TrackingRecHit/interface/TrackingRecHitFwd.h"

#include "DataFormats/Math/interface/deltaR.h"

#include "TString.h"
#include "TRegexp.h"

#include <iostream>

#include <numeric>
#include <vector>

#include "DPGAnalysis/MuonTools/interface/MuBaseFlatTableProducer.h"

#include "FWCore/Framework/interface/ESHandle.h"

#include "FWCore/ParameterSet/interface/ConfigurationDescriptions.h"
#include "FWCore/ParameterSet/interface/ParameterSetDescription.h"

#include "Geometry/CSCGeometry/interface/CSCGeometry.h"
#include "Geometry/Records/interface/MuonGeometryRecord.h"

#include "DataFormats/MuonReco/interface/Muon.h"
#include "DataFormats/MuonReco/interface/MuonFwd.h"
#include "DataFormats/MuonReco/interface/MuonIsolation.h"
#include "DataFormats/MuonReco/interface/MuonPFIsolation.h"

#include "DataFormats/TrackReco/interface/Track.h"
#include "DataFormats/TrackReco/interface/TrackFwd.h"

#include "DataFormats/VertexReco/interface/Vertex.h"
#include "DataFormats/VertexReco/interface/VertexFwd.h"

#include "DataFormats/Common/interface/TriggerResults.h"
#include "DataFormats/HLTReco/interface/TriggerEvent.h"
#include "DataFormats/HLTReco/interface/TriggerObject.h"
#include "HLTrigger/HLTcore/interface/HLTConfigProvider.h"

#include "RecoMuon/TrackingTools/interface/MuonServiceProxy.h"
#include "TrackingTools/TransientTrack/interface/TransientTrackBuilder.h"
#include "TrackingTools/Records/interface/TransientTrackRecord.h"
#include "TrackingTools/TrajectoryState/interface/TrajectoryStateOnSurface.h"
#include "TrackingTools/GeomPropagators/interface/Propagator.h"

class MuonServiceProxy;

class MuCSCTnPFlatTableProducer : public MuBaseFlatTableProducer {
public:
  /// Constructor
  MuCSCTnPFlatTableProducer(const edm::ParameterSet&);

  /// Fill descriptors
  static void fillDescriptions(edm::ConfigurationDescriptions&);

protected:
  /// Fill tree branches for a given events
  void fillTable(edm::Event&) final;

  /// Get info from the ES by run
  void getFromES(const edm::Run&, const edm::EventSetup&) final;

  /// Get info from the ES for a given event
  void getFromES(const edm::EventSetup&) final;

private:
  static constexpr Float_t MEZ[6] = {601.3, 696.11, 696.11, 827.56, 936.44, 1025.9};

  /// Tokens
  nano_mu::EDTokenHandle<reco::MuonCollection> m_muToken;
  nano_mu::EDTokenHandle<reco::TrackCollection> m_trackToken;

  nano_mu::EDTokenHandle<CSCSegmentCollection> m_cscSegmentToken;

  nano_mu::EDTokenHandle<std::vector<reco::Vertex>> m_primaryVerticesToken;

  nano_mu::EDTokenHandle<edm::TriggerResults> m_trigResultsToken;
  nano_mu::EDTokenHandle<trigger::TriggerEvent> m_trigEventToken;

  /// Name of the triggers used by muon filler for trigger matching
  std::string m_trigName;
  std::string m_isoTrigName;

  /// Handles to geometry, detector and specialized objects
  /// CSC Geometry
  nano_mu::ESTokenHandle<CSCGeometry, MuonGeometryRecord, edm::Transition::BeginRun> m_cscGeometry;

  /// Muon service proxy
  std::unique_ptr<MuonServiceProxy> m_muonSP;

  /// Transient Track Builder
  nano_mu::ESTokenHandle<TransientTrackBuilder, TransientTrackRecord> m_transientTrackBuilder;

  // Extrapolator to cylinder
  edm::ESHandle<Propagator> propagatorAlong;
  edm::ESHandle<Propagator> propagatorOpposite;
  edm::ESHandle<MagneticField> theBField;

  /// HLT config provider
  HLTConfigProvider m_hltConfig;

  /// Indices of the triggers used by muon filler for trigger matching
  std::vector<int> m_trigIndices;
  std::vector<int> m_isoTrigIndices;

  /// Selection functions
  //bool muonTagSelection(const reco::Muon & muon,edm::Handle<std::vector<reco::Track>> tracks);
  bool trackProbeSelection(const reco::Track& track, edm::Handle<std::vector<reco::Track>>);
  bool muonTagSelection(const reco::Muon&);
  //bool trackProbeSelection(const reco::Track & track);
  bool zSelection(const reco::Muon&, const reco::Track&);

  // Calculation functions
  double zMass(const reco::Track&, const reco::Muon&);
  double calcDeltaR(double, double, double, double);
  double iso(const reco::Track&, edm::Handle<std::vector<reco::Track>>);

  // Track extrapolation and segment match functions
  TrajectoryStateOnSurface surfExtrapTrkSam(const reco::Track&, double);
  FreeTrajectoryState freeTrajStateMuon(const reco::Track&);

  UChar_t ringCandidate(Int_t iiStation, Int_t station, Float_t feta, Float_t phi);
  UChar_t thisChamberCandidate(UChar_t station, UChar_t ring, Float_t phi);

  TrajectoryStateOnSurface* matchTTwithCSCSeg(const reco::Track&,
                                              edm::Handle<CSCSegmentCollection>,
                                              CSCSegmentCollection::const_iterator&,
                                              CSCDetId&);
  Float_t TrajectoryDistToSeg(TrajectoryStateOnSurface, CSCSegmentCollection::const_iterator);
  std::vector<Float_t> GetEdgeAndDistToGap(const reco::Track&, CSCDetId&);
  Float_t YDistToHVDeadZone(Float_t, Int_t);

  /// The variables holding
  /// the T&P related information

  unsigned int m_nZCands;  // the # of digis (size of all following vectors)

  double _trackIso;
  double _muonIso;
  double _zMass;

  bool hasTrigger(std::vector<int>&,
                  const trigger::TriggerObjectCollection&,
                  edm::Handle<trigger::TriggerEvent>&,
                  const reco::Muon&);

  float computeTrkIso(const reco::MuonIsolation&, float);
  float computePFIso(const reco::MuonPFIsolation&, float);
};

MuCSCTnPFlatTableProducer::MuCSCTnPFlatTableProducer(const edm::ParameterSet& config)
    : MuBaseFlatTableProducer(config),
      m_muToken{config, consumesCollector(), "muonSrc"},
      m_trackToken{config, consumesCollector(), "trackSrc"},
      m_cscSegmentToken{config, consumesCollector(), "cscSegmentSrc"},
      m_primaryVerticesToken{config, consumesCollector(), "primaryVerticesSrc"},
      m_trigResultsToken{config, consumesCollector(), "trigResultsSrc"},
      m_trigEventToken{config, consumesCollector(), "trigEventSrc"},
      m_trigName{config.getParameter<std::string>("trigName")},
      m_isoTrigName{config.getParameter<std::string>("isoTrigName")},
      m_cscGeometry{consumesCollector()},
      m_muonSP{std::make_unique<MuonServiceProxy>(config.getParameter<edm::ParameterSet>("ServiceParameters"),
                                                  consumesCollector())},
      m_transientTrackBuilder{consumesCollector(), "TransientTrackBuilder"} {
  produces<nanoaod::FlatTable>();
}

void MuCSCTnPFlatTableProducer::fillDescriptions(edm::ConfigurationDescriptions& descriptions) {
  edm::ParameterSetDescription desc;

  desc.add<std::string>("name", "cscTnP");
  desc.add<edm::InputTag>("muonSrc", edm::InputTag{"muons"});
  desc.add<edm::InputTag>("trackSrc", edm::InputTag{"generalTracks"});
  desc.add<edm::InputTag>("cscSegmentSrc", edm::InputTag{"cscSegments"});
  desc.add<edm::InputTag>("primaryVerticesSrc", edm::InputTag{"offlinePrimaryVertices"});

  desc.add<edm::InputTag>("trigEventSrc", edm::InputTag{"hltTriggerSummaryAOD::HLT"});
  desc.add<edm::InputTag>("trigResultsSrc", edm::InputTag{"TriggerResults::HLT"});

  desc.add<std::string>("trigName", "none");
  desc.add<std::string>("isoTrigName", "HLT_IsoMu2*");

  desc.setAllowAnything();

  descriptions.addWithDefaultLabel(desc);
}

void MuCSCTnPFlatTableProducer::getFromES(const edm::Run& run, const edm::EventSetup& environment) {
  m_cscGeometry.getFromES(environment);

  bool changed{true};
  m_hltConfig.init(run, environment, "HLT", changed);

  const bool enableWildcard{true};

  TString tName = TString(m_trigName);
  TRegexp tNamePattern = TRegexp(tName, enableWildcard);

  for (unsigned iPath = 0; iPath < m_hltConfig.size(); ++iPath) {
    TString pathName = TString(m_hltConfig.triggerName(iPath));
    if (pathName.Contains(tNamePattern))
      m_trigIndices.push_back(static_cast<int>(iPath));
  }

  tName = TString(m_isoTrigName);
  tNamePattern = TRegexp(tName, enableWildcard);

  for (unsigned iPath = 0; iPath < m_hltConfig.size(); ++iPath) {
    TString pathName = TString(m_hltConfig.triggerName(iPath));
    if (pathName.Contains(tNamePattern))
      m_isoTrigIndices.push_back(static_cast<int>(iPath));
  }
}

void MuCSCTnPFlatTableProducer::getFromES(const edm::EventSetup& environment) {
  m_transientTrackBuilder.getFromES(environment);
  m_muonSP->update(environment);
}

void MuCSCTnPFlatTableProducer::fillTable(edm::Event& ev) {
  unsigned int m_nZCands = 0;  // the # of digis (size of all following vectors)

  // Muon track tag variables
  std::vector<float> m_muonPt;        // muon pT [GeV/c]
  std::vector<float> m_muonPhi;       // muon phi [rad]
  std::vector<float> m_muonEta;       // muon eta
  std::vector<float> m_muonPtError;   // muon pT [GeV/c] error
  std::vector<float> m_muonPhiError;  // muon phi [rad] error
  std::vector<float> m_muonEtaError;  // muon eta error
  std::vector<int> m_muonCharge;      // muon charge
  std::vector<float> m_muonDXY;       // muon dXY
  std::vector<float> m_muonDZ;        // muon dZ
  std::vector<int> m_muonTrkHits;     // muon track Hits
  std::vector<float> m_muonChi2;      // muon Chi2
  std::vector<bool> m_muonTrigger;    // muon trigger
  std::vector<float> m_muonIso;       // track Iso

  // Track probe variabes
  std::vector<float> m_trackPt;        // track pT [GeV/c]
  std::vector<float> m_trackP;         // track P [GeV/c]
  std::vector<float> m_trackPhi;       // track phi [rad]
  std::vector<float> m_trackEta;       // track eta
  std::vector<float> m_trackPtError;   // track pT [GeV/c] error
  std::vector<float> m_trackPhiError;  // track phi [rad] error
  std::vector<float> m_trackEtaError;  // track eta error
  std::vector<int> m_trackCharge;      // track charge
  std::vector<float> m_trackDXY;       // track dXY
  std::vector<float> m_trackDZ;        // track dZ
  std::vector<int> m_trackTrkHits;     // track Hits
  std::vector<float> m_trackChi2;      // track Chi2
  std::vector<float> m_trackIso;       // track Iso

  // Z and global variables
  std::vector<float> m_zMass;                    // z mass
  std::vector<float> m_dRTrackMuon;              // dR between the track and muon
  std::vector<float> m_numberOfPrimaryVertices;  // Number of primary Vertices

  // CSC chamber information, station encoded in vector
  std::vector<int> m_chamberEndcap;                  // chamber endcap
                                                     // station encoded in array index
  std::array<std::vector<int>, 4> m_chamberRing;     // chamber Ring
  std::array<std::vector<int>, 4> m_chamberChamber;  // chamber Chamber
  std::array<std::vector<int>, 4> m_chamberLayer;    // Segment layer information

  // Track intersection variables
  std::array<std::vector<float>, 4> m_ttIntLocalX;       // track trajector intersection local X on stations 1-4
  std::array<std::vector<float>, 4> m_ttIntLocalY;       // track trajector intersection local Y on stations 1-4
  std::array<std::vector<float>, 4> m_ttIntLocalErrorX;  // track trajector intersection local X on stations 1-4
  std::array<std::vector<float>, 4> m_ttIntLocalErrorY;  // track trajector intersection local Y on stations 1-4
  std::array<std::vector<float>, 4> m_ttIntLocalW;       // track trajector intersection local Wire on stations 1-4
  std::array<std::vector<float>, 4> m_ttIntLocalS;       // track trajector intersection local Strip on stations 1-4
  std::array<std::vector<float>, 4> m_ttIntEta;          // track trajector intersection Eta stations 1-4

  // Track intersection fiducial information

  std::array<std::vector<float>, 4>
      m_ttDistToEdge;  // track trajector intersection distance to edge, neg is with chamber, on stations 1-4
  std::array<std::vector<float>, 4> m_ttDistToHVGap;  // track trajector intersection distance to HV GAP on stations 1-4

  // Segment location variables
  std::array<std::vector<float>, 4> m_segLocalX;       // segment local X on stations 1-4
  std::array<std::vector<float>, 4> m_segLocalY;       // segment local Y on stations 1-4
  std::array<std::vector<float>, 4> m_segLocalErrorX;  // segment local X error on stations 1-4
  std::array<std::vector<float>, 4> m_segLocalErrorY;  // segment local Y error on stations 1-4

  // track intersection segment residuals variables
  std::array<std::vector<float>, 4>
      m_ttIntSegResidualLocalX;  // track trajector intersection  Segment residual local X on stations 1-4
  std::array<std::vector<float>, 4>
      m_ttIntSegResidualLocalY;  // track trajector intersection  Segment residuallocal Y on stations 1-4

  auto&& propagator_along = m_muonSP->propagator("SteppingHelixPropagatorAlong");
  auto&& propagator_opposite = m_muonSP->propagator("SteppingHelixPropagatorOpposite");

  propagatorAlong = propagator_along;
  propagatorOpposite = propagator_opposite;

  theBField = m_muonSP->magneticField();

  auto muons = m_muToken.conditionalGet(ev);
  auto tracks = m_trackToken.conditionalGet(ev);
  auto segments = m_cscSegmentToken.conditionalGet(ev);
  auto primaryVertices = m_primaryVerticesToken.conditionalGet(ev);

  auto triggerResults = m_trigResultsToken.conditionalGet(ev);
  auto triggerEvent = m_trigEventToken.conditionalGet(ev);

  if (muons.isValid() && tracks.isValid() && segments.isValid() && primaryVertices.isValid() &&
      m_transientTrackBuilder.isValid()) {
    for (const auto& muon : (*muons)) {
      if (!muonTagSelection(muon))
        continue;

      bool muonTrigger = false;
      if (triggerResults.isValid() && triggerEvent.isValid()) {
        const auto& triggerObjects = triggerEvent->getObjects();
        muonTrigger = (hasTrigger(m_isoTrigIndices, triggerObjects, triggerEvent, muon) ||
                       hasTrigger(m_trigIndices, triggerObjects, triggerEvent, muon));
      }

      for (const auto& track : (*tracks)) {
        if (!trackProbeSelection(track, tracks))
          continue;
        if (!zSelection(muon, track))
          continue;
        //std::cout << "Z candidate found: " << _zMass << " track eta: " << track.eta() << std::endl;
        //std::cout.flush();
        m_nZCands++;

        m_trackPt.push_back(track.pt());
        m_trackP.push_back(track.p());
        m_trackEta.push_back(track.eta());
        m_trackPhi.push_back(track.phi());
        m_trackPtError.push_back(track.pt());
        m_trackEtaError.push_back(track.eta());
        m_trackPhiError.push_back(track.phi());
        m_trackCharge.push_back(track.charge());
        m_trackDXY.push_back(track.dxy());
        m_trackDZ.push_back(track.dz());
        m_trackTrkHits.push_back(track.hitPattern().numberOfValidTrackerHits());
        m_trackChi2.push_back(track.normalizedChi2());
        m_trackIso.push_back(_trackIso);

        m_muonPt.push_back(muon.track()->pt());
        m_muonPhi.push_back(muon.track()->phi());
        m_muonEta.push_back(muon.track()->eta());
        m_muonPtError.push_back(muon.track()->ptError());
        m_muonPhiError.push_back(muon.track()->phiError());
        m_muonEtaError.push_back(muon.track()->etaError());
        m_muonCharge.push_back(muon.charge());
        m_muonDXY.push_back(muon.track()->dxy());
        m_muonDZ.push_back(muon.track()->dz());
        m_muonTrkHits.push_back(muon.track()->hitPattern().numberOfValidTrackerHits());
        m_muonChi2.push_back(muon.track()->normalizedChi2());
        m_muonIso.push_back(computeTrkIso(muon.isolationR03(), muon.pt()));
        m_muonTrigger.push_back(muonTrigger);

        m_zMass.push_back(_zMass);
        double_t dR = calcDeltaR(track.eta(), muon.eta(), track.phi(), muon.phi());
        //double_t dR = 1.0;
        m_dRTrackMuon.push_back(dR);
        const reco::VertexCollection& vertices = *primaryVertices.product();
        m_numberOfPrimaryVertices.push_back(vertices.size());

        bool ec = (track.eta() > 0);
        UChar_t endcapCSC = ec ? 0 : 1;
        m_chamberEndcap.push_back(endcapCSC * 1);

        Int_t iiStationFail = 0;
        Int_t iiStation0Pass = 0;
        for (int iiStationZ = 0; iiStationZ < 6; iiStationZ++) {
          UChar_t stationCSC = iiStationZ > 2 ? iiStationZ - 2 : 0;
          UChar_t ringCSC = 0;
          // Could monitor this problem here if necessary;
          if (stationCSC == 0 && iiStation0Pass > 0)
            continue;
          TrajectoryStateOnSurface tsos = surfExtrapTrkSam(track, ec ? MEZ[iiStationZ] : -MEZ[iiStationZ]);

          if (tsos.isValid()) {
            Float_t trkEta = tsos.globalPosition().eta(), trkPhi = tsos.globalPosition().phi();
            ringCSC = ringCandidate(iiStationZ, stationCSC + 1, trkEta, trkPhi);

            if (ringCSC) {
              UChar_t chamberCSC = thisChamberCandidate(stationCSC + 1, ringCSC, track.phi()) - 1;
              CSCDetId Layer3id = CSCDetId(endcapCSC + 1, stationCSC + 1, ringCSC, chamberCSC + 1, 3);
              CSCDetId Layer0Id = CSCDetId(endcapCSC + 1,
                                           stationCSC + 1,
                                           ringCSC,
                                           chamberCSC + 1,
                                           0);  //layer 0 is the mid point of the chamber. It is not a real layer.
              // !!!!! need to fix Layer0Id problem with ME1/1 here

              const BoundPlane& Layer3Surface = m_cscGeometry->idToDet(Layer3id)->surface();

              tsos = surfExtrapTrkSam(track, Layer3Surface.position().z());

              if (tsos.isValid()) {
                if (stationCSC == 0)
                  iiStation0Pass++;
                // Fill track intersection denominator information
                LocalPoint localTTIntPoint = Layer3Surface.toLocal(tsos.freeState()->position());
                const CSCLayerGeometry* layerGeoma = m_cscGeometry->chamber(Layer0Id)->layer(3)->geometry();
                const CSCLayerGeometry* layerGeomb = m_cscGeometry->chamber(Layer0Id)->layer(4)->geometry();

                m_chamberRing[stationCSC].push_back(ringCSC);
                m_chamberChamber[stationCSC].push_back(chamberCSC);
                m_ttIntLocalX[stationCSC].push_back(localTTIntPoint.x());
                m_ttIntLocalY[stationCSC].push_back(localTTIntPoint.y());
                m_ttIntLocalW[stationCSC].push_back(
                    (layerGeoma->nearestWire(localTTIntPoint) + layerGeomb->nearestWire(localTTIntPoint)) / 2.0);
                m_ttIntLocalS[stationCSC].push_back(
                    (layerGeoma->strip(localTTIntPoint) + layerGeomb->strip(localTTIntPoint)) / 2.0);
                m_ttIntEta[stationCSC].push_back(trkEta);

                // Errors are those of the track intersection, chosing the plane and exact geomentry is performed in the function
                Float_t CSCProjEdgeDist = -9999.0;
                Float_t ttIntLocalErrorX = -9999.0;
                Float_t CSCDyProjHVGap = 9999.0;
                Float_t ttIntLocalErrorY = -9999.0;
                for (Int_t ly = 1; ly < 7; ly++) {
                  CSCDetId Layerid = CSCDetId(endcapCSC + 1, stationCSC + 1, ringCSC, chamberCSC + 1, ly);
                  std::vector<Float_t> EdgeAndDistToGap(GetEdgeAndDistToGap(
                      track, Layerid));  //values: 1-edge;2-err of edge;3-disttogap;4-err of dist to gap
                  if (EdgeAndDistToGap[0] > CSCProjEdgeDist) {
                    CSCProjEdgeDist = EdgeAndDistToGap[0];
                    ttIntLocalErrorX = EdgeAndDistToGap[1];
                  }
                  if (EdgeAndDistToGap[2] < CSCDyProjHVGap) {
                    CSCDyProjHVGap = EdgeAndDistToGap[2];
                    ttIntLocalErrorY = EdgeAndDistToGap[3];
                  }
                }
                m_ttDistToEdge[stationCSC].push_back(CSCProjEdgeDist);
                m_ttDistToHVGap[stationCSC].push_back(CSCDyProjHVGap);
                m_ttIntLocalErrorX[stationCSC].push_back(ttIntLocalErrorX);
                m_ttIntLocalErrorY[stationCSC].push_back(ttIntLocalErrorY);

                // now we have a local point for comparison to segments
                CSCSegmentCollection::const_iterator cscSegOut;
                TrajectoryStateOnSurface* TrajToSeg = matchTTwithCSCSeg(track, segments, cscSegOut, Layer3id);

                if (TrajToSeg == nullptr) {
                  // fill Null Num
                  m_segLocalX[stationCSC].push_back(-9999.0);
                  m_segLocalY[stationCSC].push_back(-9999.0);
                  m_segLocalErrorX[stationCSC].push_back(0.0);
                  m_segLocalErrorY[stationCSC].push_back(0.0);

                  m_ttIntSegResidualLocalX[stationCSC].push_back(-9990.0);
                  m_ttIntSegResidualLocalY[stationCSC].push_back(-9990.0);

                  m_chamberLayer[stationCSC].push_back(-9);

                  continue;
                }

                LocalPoint localSegmentPoint = (*cscSegOut).localPosition();
                LocalError localSegErr = (*cscSegOut).localPositionError();

                m_segLocalX[stationCSC].push_back(localSegmentPoint.x());
                m_segLocalY[stationCSC].push_back(localSegmentPoint.y());
                m_segLocalErrorX[stationCSC].push_back(sqrt(localSegErr.xx()));
                m_segLocalErrorY[stationCSC].push_back(sqrt(localSegErr.yy()));

                m_ttIntSegResidualLocalX[stationCSC].push_back(localTTIntPoint.x() - localSegmentPoint.x());
                m_ttIntSegResidualLocalY[stationCSC].push_back(localTTIntPoint.y() - localSegmentPoint.y());
                /* Extract layers for hits */
                int layers = 0;
                for (std::vector<CSCRecHit2D>::const_iterator itRH = cscSegOut->specificRecHits().begin();
                     itRH != cscSegOut->specificRecHits().end();
                     ++itRH) {
                  const CSCRecHit2D* recHit = &(*itRH);
                  int layer = recHit->cscDetId().layer();
                  layers |= 1 << (layer - 1);
                }
                m_chamberLayer[stationCSC].push_back(layers);

              }  // end preliminary tsos is valid

            }  // end found ring CSC

          }  // end refined tsos is valid

          if ((!tsos.isValid()) || (ringCSC == 0)) {
            // only fill Null denominator once for station 1, iiStation Z = 0,1,2
            if (iiStationZ <= 2)
              iiStationFail++;
            if (iiStationZ > 2 || iiStationFail == 3) {
              // fill Null Den Num
              m_chamberRing[stationCSC].push_back(-9);
              m_chamberChamber[stationCSC].push_back(-9);
              m_ttIntLocalX[stationCSC].push_back(-9999.0);
              m_ttIntLocalY[stationCSC].push_back(-9999.0);
              m_ttIntLocalErrorX[stationCSC].push_back(0.0);
              m_ttIntLocalErrorY[stationCSC].push_back(0.0);
              m_ttIntLocalW[stationCSC].push_back(-9999.0);
              m_ttIntLocalS[stationCSC].push_back(-9999.0);
              m_ttIntEta[stationCSC].push_back(-9999.0);

              m_ttDistToEdge[stationCSC].push_back(-9999.0);
              m_ttDistToHVGap[stationCSC].push_back(-9999.9);

              m_segLocalX[stationCSC].push_back(-9999.0);
              m_segLocalY[stationCSC].push_back(-9999.0);
              m_segLocalErrorX[stationCSC].push_back(0.0);
              m_segLocalErrorY[stationCSC].push_back(0.0);

              m_ttIntSegResidualLocalX[stationCSC].push_back(-9990.0);
              m_ttIntSegResidualLocalY[stationCSC].push_back(-9990.0);

              m_chamberLayer[stationCSC].push_back(-9);
            }
          }

        }  // end loop over CSC Z planes
      }  // endl loop over tracks
    }  // end loop over muons

  }  // End if good physics objects

  //  if (m_nZCands>0) {
  auto table = std::make_unique<nanoaod::FlatTable>(m_nZCands, m_name, false, false);

  table->setDoc("CSC Tag & Probe segment efficiency  information");

  addColumn(table, "muonPt", m_muonPt, "muon pt [GeV/c]");
  addColumn(table, "muonPhi", m_muonPhi, "muon phi [rad]");
  addColumn(table, "muonEta", m_muonEta, "muon eta");
  addColumn(table, "muonPtError", m_muonPtError, "muon pt error [GeV/c]");
  addColumn(table, "muonPhiError", m_muonPhiError, "muon phi error [rad]");
  addColumn(table, "muonEtaError", m_muonEtaError, "muon eta error");
  addColumn(table, "muonCharge", m_muonCharge, "muon charge");
  addColumn(table, "muonDXY", m_muonDXY, "muon dXY [cm]");
  addColumn(table, "muonDZ", m_muonDZ, "muon dZ [cm]");
  addColumn(table, "muonTrkHits", m_muonTrkHits, "muon track hits");
  addColumn(table, "muonChi2", m_muonChi2, "muon chi2");
  addColumn(table, "muonIso", m_trackIso, "muon relative iso");
  addColumn(table, "muonTrigger", m_muonTrigger, "muon has trigger bool");

  addColumn(table, "trackPt", m_trackPt, "track pt [GeV/c]");
  addColumn(table, "trackP", m_trackPt, "track p [GeV/c]");
  addColumn(table, "trackPhi", m_trackPhi, "track phi [rad]");
  addColumn(table, "trackEta", m_trackEta, "track eta");
  addColumn(table, "trackPtError", m_trackPtError, "track pt error [GeV/c]");
  addColumn(table, "trackPhiError", m_trackPhiError, "track phi error [rad]");
  addColumn(table, "trackEtaError", m_trackEtaError, "track eta error");
  addColumn(table, "trackCharge", m_trackCharge, "track charge");
  addColumn(table, "trackDXY", m_trackDXY, "track dXY [cm]");
  addColumn(table, "trackDZ", m_trackDZ, "track dZ [cm]");
  addColumn(table, "trackTrkHits", m_trackTrkHits, "track track hits");
  addColumn(table, "trackChi2", m_trackChi2, "track chi2");
  addColumn(table, "trackIso", m_trackIso, "track relative iso");

  addColumn(table, "zMass", m_zMass, "Z mass [GeV/c^2]");
  addColumn(table, "dRTrackMuon", m_dRTrackMuon, "dR between track and muon");
  addColumn(table, "numberOfPrimaryVertidies", m_numberOfPrimaryVertices, "Number of PVs");

  addColumn(table, "chamberEndcap", m_chamberEndcap, "");
  addColumn(table, "chamberRing1", m_chamberRing[0], "");
  addColumn(table, "chamberRing2", m_chamberRing[1], "");
  addColumn(table, "chamberRing3", m_chamberRing[2], "");
  addColumn(table, "chamberRing4", m_chamberRing[3], "");
  addColumn(table, "chamberChamber1", m_chamberChamber[0], "");
  addColumn(table, "chamberChamber2", m_chamberChamber[1], "");
  addColumn(table, "chamberChamber3", m_chamberChamber[2], "");
  addColumn(table, "chamberChamber4", m_chamberChamber[3], "");
  addColumn(table, "chamberLayer1", m_chamberLayer[0], "");
  addColumn(table, "chamberLayer2", m_chamberLayer[1], "");
  addColumn(table, "chamberLayer3", m_chamberLayer[2], "");
  addColumn(table, "chamberLayer4", m_chamberLayer[3], "");

  addColumn(table, "ttIntLocalX1", m_ttIntLocalX[0], "");
  addColumn(table, "ttIntLocalX2", m_ttIntLocalX[1], "");
  addColumn(table, "ttIntLocalX3", m_ttIntLocalX[2], "");
  addColumn(table, "ttIntLocalX4", m_ttIntLocalX[3], "");
  addColumn(table, "ttIntLocalY1", m_ttIntLocalY[0], "");
  addColumn(table, "ttIntLocalY2", m_ttIntLocalY[1], "");
  addColumn(table, "ttIntLocalY3", m_ttIntLocalY[2], "");
  addColumn(table, "ttIntLocalY4", m_ttIntLocalY[3], "");
  addColumn(table, "ttIntLocalErrorX1", m_ttIntLocalErrorX[0], "");
  addColumn(table, "ttIntLocalErrorX2", m_ttIntLocalErrorX[1], "");
  addColumn(table, "ttIntLocalErrorX3", m_ttIntLocalErrorX[2], "");
  addColumn(table, "ttIntLocalErrorX4", m_ttIntLocalErrorX[3], "");
  addColumn(table, "ttIntLocalErrorY1", m_ttIntLocalErrorY[0], "");
  addColumn(table, "ttIntLocalErrorY2", m_ttIntLocalErrorY[1], "");
  addColumn(table, "ttIntLocalErrorY3", m_ttIntLocalErrorY[2], "");
  addColumn(table, "ttIntLocalErrorY4", m_ttIntLocalErrorY[3], "");
  addColumn(table, "ttIntLocalW1", m_ttIntLocalW[0], "");
  addColumn(table, "ttIntLocalW2", m_ttIntLocalW[1], "");
  addColumn(table, "ttIntLocalW3", m_ttIntLocalW[2], "");
  addColumn(table, "ttIntLocalW4", m_ttIntLocalW[3], "");
  addColumn(table, "ttIntLocalS1", m_ttIntLocalS[0], "");
  addColumn(table, "ttIntLocalS2", m_ttIntLocalS[1], "");
  addColumn(table, "ttIntLocalS3", m_ttIntLocalS[2], "");
  addColumn(table, "ttIntLocalS4", m_ttIntLocalS[3], "");
  addColumn(table, "ttIntEta1", m_ttIntEta[0], "");
  addColumn(table, "ttIntEta2", m_ttIntEta[1], "");
  addColumn(table, "ttIntEta3", m_ttIntEta[2], "");
  addColumn(table, "ttIntEta4", m_ttIntEta[3], "");

  addColumn(table, "ttDistToEdge1", m_ttDistToEdge[0], "");
  addColumn(table, "ttDistToEdge2", m_ttDistToEdge[1], "");
  addColumn(table, "ttDistToEdge3", m_ttDistToEdge[2], "");
  addColumn(table, "ttDistToEdge4", m_ttDistToEdge[3], "");
  addColumn(table, "ttDistToHVGap1", m_ttDistToHVGap[0], "");
  addColumn(table, "ttDistToHVGap2", m_ttDistToHVGap[1], "");
  addColumn(table, "ttDistToHVGap3", m_ttDistToHVGap[2], "");
  addColumn(table, "ttDistToHVGap4", m_ttDistToHVGap[3], "");

  addColumn(table, "segLocalX1", m_segLocalX[0], "");
  addColumn(table, "segLocalX2", m_segLocalX[1], "");
  addColumn(table, "segLocalX3", m_segLocalX[2], "");
  addColumn(table, "segLocalX4", m_segLocalX[3], "");
  addColumn(table, "segLocalY1", m_segLocalY[0], "");
  addColumn(table, "segLocalY2", m_segLocalY[1], "");
  addColumn(table, "segLocalY3", m_segLocalY[2], "");
  addColumn(table, "segLocalY4", m_segLocalY[3], "");
  addColumn(table, "segLocalErrorX1", m_segLocalErrorX[0], "");
  addColumn(table, "segLocalErrorX2", m_segLocalErrorX[1], "");
  addColumn(table, "segLocalErrorX3", m_segLocalErrorX[2], "");
  addColumn(table, "segLocalErrorX4", m_segLocalErrorX[3], "");
  addColumn(table, "segLocalErrorY1", m_segLocalErrorY[0], "");
  addColumn(table, "segLocalErrorY2", m_segLocalErrorY[1], "");
  addColumn(table, "segLocalErrorY3", m_segLocalErrorY[2], "");
  addColumn(table, "segLocalErrorY4", m_segLocalErrorY[3], "");

  addColumn(table, "ttIntSegResidualLocalX1", m_ttIntSegResidualLocalX[0], "");
  addColumn(table, "ttIntSegResidualLocalX2", m_ttIntSegResidualLocalX[1], "");
  addColumn(table, "ttIntSegResidualLocalX3", m_ttIntSegResidualLocalX[2], "");
  addColumn(table, "ttIntSegResidualLocalX4", m_ttIntSegResidualLocalX[3], "");
  addColumn(table, "ttIntSegResidualLocalY1", m_ttIntSegResidualLocalY[0], "");
  addColumn(table, "ttIntSegResidualLocalY2", m_ttIntSegResidualLocalY[1], "");
  addColumn(table, "ttIntSegResidualLocalY3", m_ttIntSegResidualLocalY[2], "");
  addColumn(table, "ttIntSegResidualLocalY4", m_ttIntSegResidualLocalY[3], "");

  ev.put(std::move(table));
}

float MuCSCTnPFlatTableProducer::computeTrkIso(const reco::MuonIsolation& isolation, float muonPt) {
  return isolation.sumPt / muonPt;
}

float MuCSCTnPFlatTableProducer::computePFIso(const reco::MuonPFIsolation& pfIsolation, float muonPt) {
  return (pfIsolation.sumChargedHadronPt +
          std::max(0., pfIsolation.sumNeutralHadronEt + pfIsolation.sumPhotonEt - 0.5 * pfIsolation.sumPUPt)) /
         muonPt;
}

bool MuCSCTnPFlatTableProducer::hasTrigger(std::vector<int>& trigIndices,
                                           const trigger::TriggerObjectCollection& trigObjs,
                                           edm::Handle<trigger::TriggerEvent>& trigEvent,
                                           const reco::Muon& muon) {
  float dRMatch = 999.;
  for (int trigIdx : trigIndices) {
    const std::vector<std::string> trigModuleLabels = m_hltConfig.moduleLabels(trigIdx);

    const unsigned trigModuleIndex =
        std::find(trigModuleLabels.begin(), trigModuleLabels.end(), "hltBoolEnd") - trigModuleLabels.begin() - 1;
    const unsigned hltFilterIndex = trigEvent->filterIndex(edm::InputTag(trigModuleLabels[trigModuleIndex], "", "HLT"));
    if (hltFilterIndex < trigEvent->sizeFilters()) {
      const trigger::Keys keys = trigEvent->filterKeys(hltFilterIndex);
      const trigger::Vids vids = trigEvent->filterIds(hltFilterIndex);
      const unsigned nTriggers = vids.size();

      for (unsigned iTrig = 0; iTrig < nTriggers; ++iTrig) {
        trigger::TriggerObject trigObj = trigObjs[keys[iTrig]];
        float dR = deltaR(muon, trigObj);
        if (dR < dRMatch)
          dRMatch = dR;
      }
    }
  }

  return dRMatch < 0.1;  //CB should get it programmable
}

//bool MuCSCTnPFlatTableProducer::muonTagSelection(const reco::Muon & muon,edm::Handle<std::vector<reco::Track>> tracks)
bool MuCSCTnPFlatTableProducer::muonTagSelection(const reco::Muon& muon) {
  float ptCut = 10.0;
  int trackerHitsCut = 8;
  float dxyCut = 2.0;
  float dzCut = 24.0;
  float chi2Cut = 4.0;

  bool selected = false;
  //_muonIso = iso(*muon.track(),tracks);
  _muonIso = computePFIso(muon.pfIsolationR04(), muon.pt());

  if (!muon.isTrackerMuon())
    return false;
  if (!muon.track().isNonnull())
    return false;
  selected =
      ((muon.track()->pt() > ptCut) && (muon.track()->hitPattern().numberOfValidTrackerHits() >= trackerHitsCut) &&
       (muon.track()->dxy() < dxyCut) && (std::abs(muon.track()->dz()) < dzCut) &&
       (muon.track()->normalizedChi2() < chi2Cut) && _muonIso < 0.1);

  return selected;
}

bool MuCSCTnPFlatTableProducer::trackProbeSelection(const reco::Track& track,
                                                    edm::Handle<std::vector<reco::Track>> tracks) {
  float ptCut = 10.0;
  int trackerHitsCut = 8;
  float dxyCut = 2.0;
  float dzCut = 24.0;
  float chi2Cut = 4.0;

  bool selected = false;
  _trackIso = iso(track, tracks);

  selected =
      ((track.pt() > ptCut) && (std::abs(track.eta()) > 0.75) && (std::abs(track.eta()) < 2.55) &&
       (track.numberOfValidHits() >= trackerHitsCut) && (track.dxy() < dxyCut) && (std::abs(track.dz()) < dzCut) &&
       (track.normalizedChi2() > 0.0) && (track.normalizedChi2() < chi2Cut) && _trackIso < 0.1);

  return selected;
}

bool MuCSCTnPFlatTableProducer::zSelection(const reco::Muon& muon, const reco::Track& track) {
  bool selected = false;

  _zMass = zMass(track, muon);
  selected = (track.charge() * muon.charge() == -1 && (_zMass > 75.0) && (_zMass < 120.0));

  return selected;
}

// get track position at a particular (xy) plane given its z
TrajectoryStateOnSurface MuCSCTnPFlatTableProducer::surfExtrapTrkSam(const reco::Track& track, double z) {
  Plane::PositionType pos(0, 0, z);
  Plane::RotationType rot;
  Plane::PlanePointer myPlane = Plane::build(pos, rot);

  FreeTrajectoryState recoStart = freeTrajStateMuon(track);
  TrajectoryStateOnSurface recoProp = propagatorAlong->propagate(recoStart, *myPlane);

  if (!recoProp.isValid())
    recoProp = propagatorOpposite->propagate(recoStart, *myPlane);

  return recoProp;
}

FreeTrajectoryState MuCSCTnPFlatTableProducer::freeTrajStateMuon(const reco::Track& track) {
  //no track extras in nanoaod so directly use vx and p
  GlobalPoint innerPoint(track.vx(), track.vy(), track.vz());
  GlobalVector innerVec(track.px(), track.py(), track.pz());

  GlobalTrajectoryParameters gtPars(innerPoint, innerVec, track.charge(), &*theBField);

  AlgebraicSymMatrix66 cov;
  cov *= 1e-20;

  CartesianTrajectoryError tCov(cov);

  return (cov.kRows == 6 ? FreeTrajectoryState(gtPars, tCov) : FreeTrajectoryState(gtPars));
}

UChar_t MuCSCTnPFlatTableProducer::ringCandidate(Int_t iiStation, Int_t station, Float_t feta, Float_t phi) {
  UChar_t ring = 0;

  switch (station) {
    case 1:
      if (std::abs(feta) >= 0.85 && std::abs(feta) < 1.18) {  //ME13
        if (iiStation == 2)
          ring = 3;
        return ring;
      }
      if (std::abs(feta) >= 1.18 &&
          std::abs(feta) <= 1.5) {  //ME12 if(std::abs(feta)>1.18 && std::abs(feta)<1.7){//ME12
        if (iiStation == 1)
          ring = 2;
        return ring;
      }
      if (std::abs(feta) > 1.5 && std::abs(feta) < 2.1) {  //ME11
        if (iiStation == 0)
          ring = 1;
        return ring;
      }
      if (std::abs(feta) >= 2.1 && std::abs(feta) < 2.45) {  //ME11
        if (iiStation == 0)
          ring = 4;
        return ring;
      }
      break;
    case 2:
      if (std::abs(feta) > 0.95 && std::abs(feta) < 1.6) {  //ME22
        ring = 2;
        return ring;
      }
      if (std::abs(feta) > 1.55 && std::abs(feta) < 2.45) {  //ME21
        ring = 1;
        return ring;
      }
      break;
    case 3:
      if (std::abs(feta) > 1.08 && std::abs(feta) < 1.72) {  //ME32
        ring = 2;
        return ring;
      }
      if (std::abs(feta) > 1.69 && std::abs(feta) < 2.45) {  //ME31
        ring = 1;
        return ring;
      }
      break;
    case 4:
      if (std::abs(feta) > 1.78 && std::abs(feta) < 2.45) {  //ME41
        ring = 1;
        return ring;
      }
      if (std::abs(feta) > 1.15 && std::abs(feta) <= 1.78) {  //ME42
        ring = 2;
        return ring;
      }
      break;
    default:
      edm::LogError("") << "Invalid station: " << station << std::endl;
      break;
  }
  return 0;
}

UChar_t MuCSCTnPFlatTableProducer::thisChamberCandidate(UChar_t station, UChar_t ring, Float_t phi) {
  //    cout <<"\t\t TPTrackMuonSys::thisChamberCandidate..."<<endl;

  //search for chamber candidate based on CMS IN-2007/024
  //10 deg chambers are ME1,ME22,ME32,ME42 chambers; 20 deg chambers are ME21,31,41 chambers
  //Chambers one always starts from approx -5 deg.
  const UChar_t nVal = (station > 1 && ring == 1) ? 18 : 36;
  const Float_t ChamberSpan = 2 * M_PI / nVal;
  Float_t dphi = phi + M_PI / 36;
  while (dphi >= 2 * M_PI)
    dphi -= 2 * M_PI;
  while (dphi < 0)
    dphi += 2 * M_PI;
  UChar_t ChCand = floor(dphi / ChamberSpan) + 1;
  return ChCand > nVal ? nVal : ChCand;
}

Float_t MuCSCTnPFlatTableProducer::TrajectoryDistToSeg(TrajectoryStateOnSurface TrajSuf,
                                                       CSCSegmentCollection::const_iterator segIt) {
  if (!TrajSuf.isValid())
    return 9999.;
  const GeomDet* gdet = m_cscGeometry->idToDet((CSCDetId)(*segIt).cscDetId());
  LocalPoint localTTPos = gdet->surface().toLocal(TrajSuf.freeState()->position());
  LocalPoint localSegPos = (*segIt).localPosition();
  Float_t CSCdeltaX = localSegPos.x() - localTTPos.x();
  Float_t CSCdeltaY = localSegPos.y() - localTTPos.y();
  return sqrt(pow(CSCdeltaX, 2) + pow(CSCdeltaY, 2));
}

TrajectoryStateOnSurface* MuCSCTnPFlatTableProducer::matchTTwithCSCSeg(const reco::Track& track,
                                                                       edm::Handle<CSCSegmentCollection> cscSegments,
                                                                       CSCSegmentCollection::const_iterator& cscSegOut,
                                                                       CSCDetId& idCSC) {
  TrajectoryStateOnSurface* TrajSuf = nullptr;
  Float_t deltaCSCR = 9999.;
  for (CSCSegmentCollection::const_iterator segIt = cscSegments->begin(); segIt != cscSegments->end(); segIt++) {
    CSCDetId id = (CSCDetId)(*segIt).cscDetId();

    if (idCSC.endcap() != id.endcap())
      continue;
    if (idCSC.station() != id.station())
      continue;
    if (idCSC.chamber() != id.chamber())
      continue;

    Bool_t ed1 =
        (idCSC.station() == 1) && ((idCSC.ring() == 1 || idCSC.ring() == 4) && (id.ring() == 1 || id.ring() == 4));
    Bool_t ed2 =
        (idCSC.station() == 1) && ((idCSC.ring() == 2 && id.ring() == 2) || (idCSC.ring() == 3 && id.ring() == 3));
    Bool_t ed3 = (idCSC.station() != 1) && (idCSC.ring() == id.ring());
    Bool_t TMCSCMatch = (ed1 || ed2 || ed3);

    if (!TMCSCMatch)
      continue;

    const CSCChamber* cscchamber = m_cscGeometry->chamber(id);

    if (!cscchamber)
      continue;

    TrajectoryStateOnSurface TrajSuf_ = surfExtrapTrkSam(track, cscchamber->toGlobal((*segIt).localPosition()).z());
    Float_t dR_ = std::abs(TrajectoryDistToSeg(TrajSuf_, segIt));
    if (dR_ < deltaCSCR) {
      delete TrajSuf;
      TrajSuf = new TrajectoryStateOnSurface(TrajSuf_);
      deltaCSCR = dR_;
      cscSegOut = segIt;
    }
  }  //loop over segments

  return TrajSuf;
}

std::vector<Float_t> MuCSCTnPFlatTableProducer::GetEdgeAndDistToGap(const reco::Track& track, CSCDetId& detid) {
  std::vector<Float_t> result(4, 9999.);
  result[3] = -9999;
  const GeomDet* gdet = m_cscGeometry->idToDet(detid);
  TrajectoryStateOnSurface tsos = surfExtrapTrkSam(track, gdet->surface().position().z());
  if (!tsos.isValid())
    return result;
  LocalPoint localTTPos = gdet->surface().toLocal(tsos.freeState()->position());
  const CSCWireTopology* wireTopology = m_cscGeometry->layer(detid)->geometry()->wireTopology();
  Float_t wideWidth = wireTopology->wideWidthOfPlane();
  Float_t narrowWidth = wireTopology->narrowWidthOfPlane();
  Float_t length = wireTopology->lengthOfPlane();
  // If slanted, there is no y offset between local origin and symmetry center of wire plane
  Float_t yOfFirstWire = std::abs(wireTopology->wireAngle()) > 1.E-06 ? -0.5 * length : wireTopology->yOfWire(1);
  // y offset between local origin and symmetry center of wire plane
  Float_t yCOWPOffset = yOfFirstWire + 0.5 * length;
  // tangent of the incline angle from inside the trapezoid
  Float_t tangent = (wideWidth - narrowWidth) / (2. * length);
  // y position wrt bottom of trapezoid
  Float_t yPrime = localTTPos.y() + std::abs(yOfFirstWire);
  // half trapezoid width at y' is 0.5 * narrowWidth + x side of triangle with the above tangent and side y'
  Float_t halfWidthAtYPrime = 0.5 * narrowWidth + yPrime * tangent;
  // x offset between local origin and symmetry center of wire plane is zero
  // x offset of ME11s is also zero. x center of wire groups is not at zero, because it is not parallel to x. The wire groups of ME11s have a complex geometry, see the code in m_debug.
  Float_t edgex = std::abs(localTTPos.x()) - halfWidthAtYPrime;
  Float_t edgey = std::abs(localTTPos.y() - yCOWPOffset) - 0.5 * length;
  LocalError localTTErr = tsos.localError().positionError();
  if (edgex > edgey) {
    result[0] = edgex;
    result[1] = sqrt(localTTErr.xx());
    //result[1] = sqrt(tsos.cartesianError().position().cxx());
  } else {
    result[0] = edgey;
    result[1] = sqrt(localTTErr.yy());
    //result[1] = sqrt(tsos.cartesianError().position().cyy());
  }
  result[2] = YDistToHVDeadZone(localTTPos.y(), detid.station() * 10 + detid.ring());
  result[3] = sqrt(localTTErr.yy());
  return result;  //return values: 1-edge;2-err of edge;3-disttogap;4-err of dist to gap
}

//deadzone center is according to http://cmssdt.cern.ch/SDT/lxr/source/RecoLocalMuon/CSCEfficiency/src/CSCEfficiency.cc#605
//wire spacing is according to CSCTDR
Float_t MuCSCTnPFlatTableProducer::YDistToHVDeadZone(Float_t yLocal, Int_t StationAndRing) {
  //the ME11 wires are not parallel to x, but no gap
  //chamber edges are not included.
  const Float_t deadZoneCenterME1_2[2] = {-32.88305, 32.867423};
  const Float_t deadZoneCenterME1_3[2] = {-22.7401, 27.86665};
  const Float_t deadZoneCenterME2_1[2] = {-27.47, 33.67};
  const Float_t deadZoneCenterME3_1[2] = {-36.21, 23.68};
  const Float_t deadZoneCenterME4_1[2] = {-26.14, 23.85};
  const Float_t deadZoneCenterME234_2[4] = {-81.8744, -21.18165, 39.51105, 100.2939};
  const Float_t* deadZoneCenter;
  Float_t deadZoneHeightHalf = 0.32 * 7 / 2;  // wire spacing * (wires missing + 1)/2
  Float_t minY = 999999.;
  UChar_t nGaps = 2;
  switch (std::abs(StationAndRing)) {
    case 11:
    case 14:
      return 162;  //the height of ME11
      break;
    case 12:
      deadZoneCenter = deadZoneCenterME1_2;
      break;
    case 13:
      deadZoneCenter = deadZoneCenterME1_3;
      break;
    case 21:
      deadZoneCenter = deadZoneCenterME2_1;
      break;
    case 31:
      deadZoneCenter = deadZoneCenterME3_1;
      break;
    case 41:
      deadZoneCenter = deadZoneCenterME4_1;
      break;
    default:
      deadZoneCenter = deadZoneCenterME234_2;
      nGaps = 4;
  }
  for (UChar_t iGap = 0; iGap < nGaps; iGap++) {
    Float_t newMinY = yLocal < deadZoneCenter[iGap] ? deadZoneCenter[iGap] - deadZoneHeightHalf - yLocal
                                                    : yLocal - (deadZoneCenter[iGap] + deadZoneHeightHalf);
    if (newMinY < minY)
      minY = newMinY;
  }
  return minY;
}

double MuCSCTnPFlatTableProducer::iso(const reco::Track& track, edm::Handle<std::vector<reco::Track>> tracks) {
  double isoSum = 0.0;
  for (const auto& track2 : (*tracks)) {
    double dR = calcDeltaR(track.eta(), track2.eta(), track.phi(), track2.phi());
    if (track2.pt() > 1.0 && dR > 0.001 && dR < 0.3)
      isoSum += track2.pt();
  }
  return isoSum / track.pt();
}

double MuCSCTnPFlatTableProducer::calcDeltaR(double eta1, double eta2, double phi1, double phi2) {
  double deta = eta1 - eta2;
  if (phi1 < 0)
    phi1 += 2.0 * M_PI;
  if (phi2 < 0)
    phi2 += 2.0 * M_PI;
  double dphi = phi1 - phi2;
  if (dphi > M_PI)
    dphi -= 2. * M_PI;
  else if (dphi < -M_PI)
    dphi += 2. * M_PI;
  return std::sqrt(deta * deta + dphi * dphi);
}

double MuCSCTnPFlatTableProducer::zMass(const reco::Track& track, const reco::Muon& muon) {
  double zMass = -99.0;
  double mMu = 0.1134289256;

  zMass = std::pow((std::sqrt(std::pow(muon.p(), 2) + mMu * mMu) + std::sqrt(std::pow(track.p(), 2) + mMu * mMu)), 2) -
          (std::pow((muon.px() + track.px()), 2) + std::pow((muon.py() + track.py()), 2) +
           std::pow((muon.pz() + track.pz()), 2));

  return std::sqrt(zMass);
}

#include "FWCore/PluginManager/interface/ModuleDef.h"
#include "FWCore/Framework/interface/MakerMacros.h"

DEFINE_FWK_MODULE(MuCSCTnPFlatTableProducer);