Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
// -*- C++ -*-
//
// Package:    CSCSkim
// Class:      CSCSkim
//
/**\class CSCSkim CSCSkim.cc RecoLocalMuon/CSCSkim/src/CSCSkim.cc

 Description: Offline skim module for CSC cosmic ray data

 Implementation:
     <Notes on implementation>
*/
//
// Original Author:  Michael Schmitt
//         Created:  Sat Jul 12 17:43:33 CEST 2008
//
//
//======================================================================
//
// CSCSkim:
//
// A simple skim module for extracting generally useful events from
// the cosmic-ray runs (CRUZET-n and CRAFT).  The selected events
// should be useful for most CSC-DPG and muon-POG studies.  However,
// the selection requirements may bias the sample with respect to
// trigger requirements and certain noise and efficiency-related
// studies.
//
// Types of skims:   (typeOfSkim control word)
//    1  = loose skim demanding hit chambers and/or segments
//    2  = ask for hit chambers in both endcaps
//    3  = segments in neighboring chambers - good for alignment
//    4  = messy events
//    5  = select events with DIGIs from one particular chamber
//    6  = overlap with DT
//    7  = nearly horizontal track going through ME1/1,2/1,3/1,4/1
//    8  = ask for one long cosmic stand-alone muon track
//    9  = selection for magnetic field studies
//
//
//======================================================================

#include "DPGAnalysis/Skims/interface/CSCSkim.h"

using namespace std;
using namespace edm;

//===================
//  CONSTRUCTOR
//===================
CSCSkim::CSCSkim(const edm::ParameterSet& pset) : m_CSCGeomToken(esConsumes()) {
  // tokens from tags

  // Really should define the wire and digi tags in config, but for now, to avoid having to modify
  // multiple config files, just hard-code those tags, to be equivalent to the pre-consumes code

  //  wds_token = consumes<CSCWireDigiCollection>(pset.getParameter<InputTag>("simWireDigiTag"));
  //  sds_token = consumes<CSCStripDigiCollection>(pset.getParameter<InputTag>("simStripDigiTag"));
  //  wdr_token = consumes<CSCWireDigiCollection>(pset.getParameter<InputTag>("wireDigiTag"));
  //  sdr_token = consumes<CSCStripDigiCollection>(pset.getParameter<InputTag>("stripDigiTag"));

  wds_token = consumes<CSCWireDigiCollection>(edm::InputTag("simMuonCSCDigis", "MuonCSCWireDigi"));
  sds_token = consumes<CSCStripDigiCollection>(edm::InputTag("simMuonCSCDigis", "MuonCSCStripDigi"));
  wdr_token = consumes<CSCWireDigiCollection>(edm::InputTag("muonCSCDigis", "MuonCSCWireDigi"));
  sdr_token = consumes<CSCStripDigiCollection>(edm::InputTag("muonCSCDigis", "MuonCSCStripDigi"));

  rh_token = consumes<CSCRecHit2DCollection>(pset.getParameter<InputTag>("cscRecHitTag"));
  seg_token = consumes<CSCSegmentCollection>(pset.getParameter<InputTag>("cscSegmentTag"));

  sam_token = consumes<reco::TrackCollection>(pset.getParameter<InputTag>("SAMuonTag"));
  trk_token = consumes<reco::TrackCollection>(pset.getParameter<InputTag>("trackTag"));
  glm_token = consumes<reco::MuonCollection>(pset.getParameter<InputTag>("GLBMuonTag"));

  // Get the various input parameters
  outputFileName = pset.getUntrackedParameter<std::string>("outputFileName", "outputSkim.root");
  histogramFileName = pset.getUntrackedParameter<std::string>("histogramFileName", "histos.root");
  typeOfSkim = pset.getUntrackedParameter<int>("typeOfSkim", 1);
  nLayersWithHitsMinimum = pset.getUntrackedParameter<int>("nLayersWithHitsMinimum", 3);
  minimumHitChambers = pset.getUntrackedParameter<int>("minimumHitChambers", 1);
  minimumSegments = pset.getUntrackedParameter<int>("minimumSegments", 3);
  demandChambersBothSides = pset.getUntrackedParameter<bool>("demandChambersBothSides", false);
  makeHistograms = pset.getUntrackedParameter<bool>("makeHistograms", false);
  makeHistogramsForMessyEvents = pset.getUntrackedParameter<bool>("makeHistogramsForMessyEvebts", false);
  whichEndcap = pset.getUntrackedParameter<int>("whichEndcap", 2);
  whichStation = pset.getUntrackedParameter<int>("whichStation", 3);
  whichRing = pset.getUntrackedParameter<int>("whichRing", 2);
  whichChamber = pset.getUntrackedParameter<int>("whichChamber", 24);

  // for BStudy selection (skim type 9)
  pMin = pset.getUntrackedParameter<double>("pMin", 3.);
  zLengthMin = pset.getUntrackedParameter<double>("zLengthMin", 200.);
  nCSCHitsMin = pset.getUntrackedParameter<int>("nCSCHitsMin", 9);
  zInnerMax = pset.getUntrackedParameter<double>("zInnerMax", 9000.);
  nTrHitsMin = pset.getUntrackedParameter<int>("nTrHitsMin", 8);
  zLengthTrMin = pset.getUntrackedParameter<double>("zLengthTrMin", 180.);
  rExtMax = pset.getUntrackedParameter<double>("rExtMax", 3000.);
  redChiSqMax = pset.getUntrackedParameter<double>("redChiSqMax", 20.);
  nValidHitsMin = pset.getUntrackedParameter<int>("nValidHitsMin", 8);

  LogInfo("[CSCSkim] Setup") << "\n\t===== CSCSkim =====\n"
                             << "\t\ttype of skim ...............................\t" << typeOfSkim
                             << "\t\tminimum number of layers with hits .........\t" << nLayersWithHitsMinimum
                             << "\n\t\tminimum number of chambers w/ hit layers..\t" << minimumHitChambers
                             << "\n\t\tminimum number of segments ...............\t" << minimumSegments
                             << "\n\t\tdemand chambers on both sides.............\t" << demandChambersBothSides
                             << "\n\t\tmake histograms...........................\t" << makeHistograms
                             << "\n\t\t..for messy events........................\t" << makeHistogramsForMessyEvents
                             << "\n\t===================\n\n";
}

//===================
//  DESTRUCTOR
//===================
CSCSkim::~CSCSkim() {}

//================
//  BEGIN JOB
//================
void CSCSkim::beginJob() {
  // set counters to zero
  nEventsAnalyzed = 0;
  nEventsSelected = 0;
  nEventsChambersBothSides = 0;
  nEventsOverlappingChambers = 0;
  nEventsMessy = 0;
  nEventsCertainChamber = 0;
  nEventsDTOverlap = 0;
  nEventsHaloLike = 0;
  nEventsLongSATrack = 0;
  nEventsForBFieldStudies = 0;
  iRun = 0;
  iEvent = 0;

  if (makeHistograms || makeHistogramsForMessyEvents) {
    // Create the root file for the histograms
    theHistogramFile = new TFile(histogramFileName.c_str(), "RECREATE");
    theHistogramFile->cd();

    if (makeHistograms) {
      // book histograms for the skimming module
      hxnRecHits = new TH1F("hxnRecHits", "n RecHits", 61, -0.5, 60.5);
      hxnSegments = new TH1F("hxnSegments", "n Segments", 11, -0.5, 10.5);
      hxnHitChambers = new TH1F("hxnHitsChambers", "n chambers with hits", 11, -0.5, 10.5);
      hxnRecHitsSel = new TH1F("hxnRecHitsSel", "n RecHits selected", 61, -0.5, 60.5);

      xxP = new TH1F("xxP", "P global", 100, 0., 200.);
      xxnValidHits = new TH1F("xxnValidHits", "n valid hits global", 61, -0.5, 60.5);
      xxnTrackerHits = new TH1F("xxnTrackerHits", "n tracker hits global", 61, -0.5, 60.5);
      xxnCSCHits = new TH1F("xxnCSCHits", "n CSC hits global", 41, -0.5, 40.5);
      xxredChiSq = new TH1F("xxredChiSq", "red chisq global", 100, 0., 100.);
    }
    if (makeHistogramsForMessyEvents) {
      // book histograms for the messy event skimming module
      mevnRecHits0 = new TH1F("mevnRecHits0", "n RecHits", 121, -0.5, 120.5);
      mevnChambers0 = new TH1F("mevnChambers0", "n chambers with hits", 21, -0.5, 20.5);
      mevnSegments0 = new TH1F("mevnSegments0", "n Segments", 21, -0.5, 20.5);
      mevnRecHits1 = new TH1F("mevnRecHits1", "n RecHits", 100, 0., 300.);
      mevnChambers1 = new TH1F("mevnChambers1", "n chambers with hits", 50, 0., 50.);
      mevnSegments1 = new TH1F("mevnSegments1", "n Segments", 30, 0., 30.);
    }
  }
}

//================
//  END JOB
//================
void CSCSkim::endJob() {
  // Write out results

  float fraction = 0.;
  if (nEventsAnalyzed > 0) {
    fraction = (float)nEventsSelected / (float)nEventsAnalyzed;
  }

  LogInfo("[CSCSkim] Summary") << "\n\n\t====== CSCSkim ==========================================================\n"
                               << "\t\ttype of skim ...............................\t" << typeOfSkim << "\n"
                               << "\t\tevents analyzed ..............\t" << nEventsAnalyzed << "\n"
                               << "\t\tevents selected ..............\t" << nEventsSelected
                               << "\tfraction= " << fraction << std::endl
                               << "\t\tevents chambers both sides ...\t" << nEventsChambersBothSides << "\n"
                               << "\t\tevents w/ overlaps .......... \t" << nEventsOverlappingChambers << "\n"
                               << "\t\tevents lots of hit chambers . \t" << nEventsMessy << "\n"
                               << "\t\tevents from certain chamber . \t" << nEventsCertainChamber << "\n"
                               << "\t\tevents in DT-CSC overlap .... \t" << nEventsDTOverlap << "\n"
                               << "\t\tevents halo-like ............ \t" << nEventsHaloLike << "\n"
                               << "\t\tevents w/ long SA track ..... \t" << nEventsLongSATrack << "\n"
                               << "\t\tevents good for BField  ..... \t" << nEventsForBFieldStudies << "\n"
                               << "\t=========================================================================\n\n";

  if (makeHistograms || makeHistogramsForMessyEvents) {
    // Write the histos to file
    LogDebug("[CSCSkim]") << "======= write out my histograms ====\n";
    theHistogramFile->cd();
    if (makeHistograms) {
      hxnRecHits->Write();
      hxnSegments->Write();
      hxnHitChambers->Write();
      hxnRecHitsSel->Write();
    }
    if (makeHistogramsForMessyEvents) {
      mevnRecHits0->Write();
      mevnChambers0->Write();
      mevnSegments0->Write();
      mevnRecHits1->Write();
      mevnChambers1->Write();
      mevnSegments1->Write();
    }
    theHistogramFile->Close();
  }
}

//================
//  FILTER MAIN
//================
bool CSCSkim::filter(edm::Event& event, const edm::EventSetup& eventSetup) {
  // increment counter
  nEventsAnalyzed++;

  iRun = event.id().run();
  iEvent = event.id().event();

  LogDebug("[CSCSkim] EventInfo") << "Run: " << iRun << "\tEvent: " << iEvent << "\tn Analyzed: " << nEventsAnalyzed;

  // Get the CSC Geometry :
  ESHandle<CSCGeometry> cscGeom = eventSetup.getHandle(m_CSCGeomToken);

  // Get the DIGI collections
  edm::Handle<CSCWireDigiCollection> wires;
  edm::Handle<CSCStripDigiCollection> strips;

  if (event.eventAuxiliary().isRealData()) {
    event.getByToken(wdr_token, wires);
    event.getByToken(sdr_token, strips);
  } else {
    event.getByToken(wds_token, wires);
    event.getByToken(sds_token, strips);
  }

  // Get the RecHits collection :
  Handle<CSCRecHit2DCollection> cscRecHits;
  event.getByToken(rh_token, cscRecHits);

  // get CSC segment collection
  Handle<CSCSegmentCollection> cscSegments;
  event.getByToken(seg_token, cscSegments);

  // get the cosmic muons collection
  Handle<reco::TrackCollection> saMuons;
  if (typeOfSkim == 8) {
    event.getByToken(sam_token, saMuons);
  }

  // get the stand-alone muons collection
  Handle<reco::TrackCollection> tracks;
  Handle<reco::MuonCollection> gMuons;
  if (typeOfSkim == 9) {
    event.getByToken(sam_token, saMuons);
    event.getByToken(trk_token, tracks);
    event.getByToken(glm_token, gMuons);
  }

  //======================================
  // evaluate the skimming routines
  //======================================

  // basic skimming
  bool basicEvent = false;
  if (typeOfSkim == 1 || typeOfSkim == 2) {
    basicEvent = doCSCSkimming(cscRecHits, cscSegments);
  }

  // overlapping chamber skim
  bool goodOverlapEvent = false;
  if (typeOfSkim == 3) {
    goodOverlapEvent = doOverlapSkimming(cscSegments);
    if (goodOverlapEvent) {
      nEventsOverlappingChambers++;
    }
  }

  // messy events skim
  bool messyEvent = false;
  if (typeOfSkim == 4) {
    messyEvent = doMessyEventSkimming(cscRecHits, cscSegments);
    if (messyEvent) {
      nEventsMessy++;
    }
  }

  // select events with DIGIs in a certain chamber
  bool hasChamber = false;
  if (typeOfSkim == 5) {
    hasChamber = doCertainChamberSelection(wires, strips);
    if (hasChamber) {
      nEventsCertainChamber++;
    }
  }

  // select events in the DT-CSC overlap region
  bool DTOverlapCandidate = false;
  if (typeOfSkim == 6) {
    DTOverlapCandidate = doDTOverlap(cscSegments);
    if (DTOverlapCandidate) {
      nEventsDTOverlap++;
    }
  }

  // select halo-like events
  bool HaloLike = false;
  if (typeOfSkim == 7) {
    HaloLike = doHaloLike(cscSegments);
    if (HaloLike) {
      nEventsHaloLike++;
    }
  }

  // select long cosmic tracks
  bool LongSATrack = false;
  if (typeOfSkim == 8) {
    LongSATrack = doLongSATrack(saMuons);
    if (LongSATrack) {
      nEventsLongSATrack++;
    }
  }

  // select events suitable for a B-field study.  They have tracks in the tracker.
  bool GoodForBFieldStudy = false;
  if (typeOfSkim == 9) {
    GoodForBFieldStudy = doBFieldStudySelection(saMuons, tracks, gMuons);
    if (GoodForBFieldStudy) {
      nEventsForBFieldStudies++;
    }
  }

  // set filter flag
  bool selectThisEvent = false;
  if (typeOfSkim == 1 || typeOfSkim == 2) {
    selectThisEvent = basicEvent;
  }
  if (typeOfSkim == 3) {
    selectThisEvent = goodOverlapEvent;
  }
  if (typeOfSkim == 4) {
    selectThisEvent = messyEvent;
  }
  if (typeOfSkim == 5) {
    selectThisEvent = hasChamber;
  }
  if (typeOfSkim == 6) {
    selectThisEvent = DTOverlapCandidate;
  }
  if (typeOfSkim == 7) {
    selectThisEvent = HaloLike;
  }
  if (typeOfSkim == 8) {
    selectThisEvent = LongSATrack;
  }
  if (typeOfSkim == 9) {
    selectThisEvent = GoodForBFieldStudy;
  }

  if (selectThisEvent) {
    nEventsSelected++;
  }

  return selectThisEvent;
}

// ==============================================
//
// CSC Skimming
//
// ==============================================

bool CSCSkim::doCSCSkimming(edm::Handle<CSCRecHit2DCollection> cscRecHits,
                            edm::Handle<CSCSegmentCollection> cscSegments) {
  // how many RecHits in the collection?
  int nRecHits = cscRecHits->size();

  // zero the recHit counter
  int cntRecHit[600];
  for (int i = 0; i < 600; i++) {
    cntRecHit[i] = 0;
  }

  // ---------------------
  // Loop over rechits
  // ---------------------

  CSCRecHit2DCollection::const_iterator recIt;
  for (recIt = cscRecHits->begin(); recIt != cscRecHits->end(); recIt++) {
    // which chamber is it?
    CSCDetId idrec = (CSCDetId)(*recIt).cscDetId();
    int kEndcap = idrec.endcap();
    int kRing = idrec.ring();
    int kStation = idrec.station();
    int kChamber = idrec.chamber();
    int kLayer = idrec.layer();

    // compute chamber serial number
    int kSerial = chamberSerial(kEndcap, kStation, kRing, kChamber);

    // increment recHit counter
    //     (each layer is represented by a different power of 10)
    int kDigit = (int)pow((float)10., (float)(kLayer - 1));
    cntRecHit[kSerial] += kDigit;

  }  //end rechit loop

  // ------------------------------------------------------
  // Are there chambers with the minimum number of hits?
  // ------------------------------------------------------

  int nChambersWithMinimalHits = 0;
  int nChambersWithMinimalHitsPOS = 0;
  int nChambersWithMinimalHitsNEG = 0;
  if (nRecHits > 0) {
    for (int i = 0; i < 600; i++) {
      if (cntRecHit[i] > 0) {
        int nLayersWithHits = 0;
        float dummy = (float)cntRecHit[i];
        for (int j = 5; j > -1; j--) {
          float digit = dummy / pow((float)10., (float)j);
          int kCount = (int)digit;
          if (kCount > 0)
            nLayersWithHits++;
          dummy = dummy - ((float)kCount) * pow((float)10., (float)j);
        }
        if (nLayersWithHits > nLayersWithHitsMinimum) {
          if (i < 300) {
            nChambersWithMinimalHitsPOS++;
          } else {
            nChambersWithMinimalHitsNEG++;
          }
        }
      }
    }
    nChambersWithMinimalHits = nChambersWithMinimalHitsPOS + nChambersWithMinimalHitsNEG;
  }

  // how many Segments?
  int nSegments = cscSegments->size();

  // ----------------------
  // fill histograms
  // ----------------------

  if (makeHistograms) {
    hxnRecHits->Fill(nRecHits);
    if (nRecHits > 0) {
      hxnSegments->Fill(nSegments);
      hxnHitChambers->Fill(nChambersWithMinimalHits);
    }
    if (nChambersWithMinimalHits > 0) {
      hxnRecHitsSel->Fill(nRecHits);
    }
  }

  // ----------------------
  // set the filter flag
  // ----------------------
  bool basicEvent = (nChambersWithMinimalHits >= minimumHitChambers) && (nSegments >= minimumSegments);

  bool chambersOnBothSides =
      ((nChambersWithMinimalHitsPOS >= minimumHitChambers) && (nChambersWithMinimalHitsNEG >= minimumHitChambers));

  if (chambersOnBothSides) {
    nEventsChambersBothSides++;
  }

  bool selectEvent = false;
  if (typeOfSkim == 1) {
    selectEvent = basicEvent;
  }
  if (typeOfSkim == 2) {
    selectEvent = chambersOnBothSides;
  }

  // debug
  LogDebug("[CSCSkim]") << "----- nRecHits = " << nRecHits
                        << "\tnChambersWithMinimalHits = " << nChambersWithMinimalHits << "\tnSegments = " << nSegments
                        << "\tselect? " << selectEvent << std::endl;

  /*
  if ((nChambersWithMinimalHitsPOS >= minimumHitChambers) && (nChambersWithMinimalHitsNEG >= minimumHitChambers)) {
    std::cout << "\n==========================================================================\n"
	 << "\tinteresting event - chambers hit on both sides\n"
	 << "\t  " <<  nEventsAnalyzed
	 << "\trun " << iRun << "\tevent " << iEvent << std::endl;
    std::cout << "----- nRecHits = " << nRecHits
	 << "\tnChambersWithMinimalHits = " << nChambersWithMinimalHits
	 << "\tnSegments = " << nSegments 
	 << "\tselect? " << selectEvent << std::endl;
    for (int i = 0; i < 600; i++) {
      if (cntRecHit[i] > 0) {
	cout << "\t\t" << i << "\tcntRecHit= " << cntRecHit[i] << std::endl;
      }
    }
    std::cout << "==========================================================================\n\n" ;
  }
  */

  return selectEvent;
}

//-------------------------------------------------------------------------------
// A module to select events useful in aligning chambers relative to each other
// using the overlap regions at the edges (in Xlocal) of the chamber.
//-------------------------------------------------------------------------------
bool CSCSkim::doOverlapSkimming(edm::Handle<CSCSegmentCollection> cscSegments) {
  const int nhitsMinimum = 4;
  const float chisqMaximum = 100.;
  const int nAllMaximum = 3;

  // how many Segments?
  //  int nSegments = cscSegments->size();

  // zero arrays
  int nAll[600];
  int nGood[600];
  for (int i = 0; i < 600; i++) {
    nAll[i] = 0;
    nGood[i] = 0;
  }

  // -----------------------
  // loop over segments
  // -----------------------
  for (CSCSegmentCollection::const_iterator it = cscSegments->begin(); it != cscSegments->end(); it++) {
    // which chamber?
    CSCDetId id = (CSCDetId)(*it).cscDetId();
    int kEndcap = id.endcap();
    int kStation = id.station();
    int kRing = id.ring();
    int kChamber = id.chamber();
    int kSerial = chamberSerial(kEndcap, kStation, kRing, kChamber);

    // segment information
    float chisq = (*it).chi2();
    int nhits = (*it).nRecHits();

    // is this a good segment?
    bool goodSegment = (nhits >= nhitsMinimum) && (chisq < chisqMaximum);

    /*
    LocalPoint localPos = (*it).localPosition();
    float segX     = localPos.x();
    float segY     = localPos.y();
    std::cout << "E/S/R/Ch: " << kEndcap << "/" << kStation << "/" << kRing << "/" << kChamber
	 << "\tnhits/chisq: " << nhits << "/" << chisq
	 << "\tX/Y: " << segX << "/" << segY
	 << "\tgood? " << goodSegment << std::endl;
    */

    // count
    nAll[kSerial - 1]++;
    if (goodSegment)
      nGood[kSerial]++;

  }  // end loop over segments

  //----------------------
  // select the event
  //----------------------

  // does any chamber have too many segments?
  bool messyChamber = false;
  for (int i = 0; i < 600; i++) {
    if (nAll[i] > nAllMaximum)
      messyChamber = true;
  }

  // are there consecutive chambers with good segments
  // (This is a little sloppy but is probably fine for skimming...)
  bool consecutiveChambers = false;
  for (int i = 0; i < 599; i++) {
    if ((nGood[i] > 0) && (nGood[i + 1] > 0))
      consecutiveChambers = true;
  }

  bool selectThisEvent = !messyChamber && consecutiveChambers;

  return selectThisEvent;
}

//============================================================
//
// This module selects events with a large numbere
// of recHits and larger number of chambers with hits.
//
//============================================================
bool CSCSkim::doMessyEventSkimming(edm::Handle<CSCRecHit2DCollection> cscRecHits,
                                   edm::Handle<CSCSegmentCollection> cscSegments) {
  // how many RecHits in the collection?
  int nRecHits = cscRecHits->size();

  // zero the recHit counter
  int cntRecHit[600];
  for (int i = 0; i < 600; i++) {
    cntRecHit[i] = 0;
  }

  // ---------------------
  // Loop over rechits
  // ---------------------

  CSCRecHit2DCollection::const_iterator recIt;
  for (recIt = cscRecHits->begin(); recIt != cscRecHits->end(); recIt++) {
    // which chamber is it?
    CSCDetId idrec = (CSCDetId)(*recIt).cscDetId();
    int kEndcap = idrec.endcap();
    int kRing = idrec.ring();
    int kStation = idrec.station();
    int kChamber = idrec.chamber();
    int kLayer = idrec.layer();

    // compute chamber serial number
    int kSerial = chamberSerial(kEndcap, kStation, kRing, kChamber);

    // increment recHit counter
    //     (each layer is represented by a different power of 10)
    int kDigit = (int)pow((float)10., (float)(kLayer - 1));
    cntRecHit[kSerial] += kDigit;

  }  //end rechit loop

  // ------------------------------------------------------
  // Are there chambers with the minimum number of hits?
  // ------------------------------------------------------

  int nChambersWithMinimalHits = 0;
  int nChambersWithMinimalHitsPOS = 0;
  int nChambersWithMinimalHitsNEG = 0;
  if (nRecHits > 0) {
    for (int i = 0; i < 600; i++) {
      if (cntRecHit[i] > 0) {
        int nLayersWithHits = 0;
        float dummy = (float)cntRecHit[i];
        for (int j = 5; j > -1; j--) {
          float digit = dummy / pow((float)10., (float)j);
          int kCount = (int)digit;
          if (kCount > 0)
            nLayersWithHits++;
          dummy = dummy - ((float)kCount) * pow((float)10., (float)j);
        }
        if (nLayersWithHits > nLayersWithHitsMinimum) {
          if (i < 300) {
            nChambersWithMinimalHitsPOS++;
          } else {
            nChambersWithMinimalHitsNEG++;
          }
        }
      }
    }
    nChambersWithMinimalHits = nChambersWithMinimalHitsPOS + nChambersWithMinimalHitsNEG;
  }

  // how many Segments?
  int nSegments = cscSegments->size();

  // ----------------------
  // fill histograms
  // ----------------------

  if (makeHistogramsForMessyEvents) {
    if (nRecHits > 8) {
      mevnRecHits0->Fill(nRecHits);
      mevnChambers0->Fill(nChambersWithMinimalHits);
      mevnSegments0->Fill(nSegments);
    }
    if (nRecHits > 54) {
      double dummy = (double)nRecHits;
      if (dummy > 299.9)
        dummy = 299.9;
      mevnRecHits1->Fill(dummy);
      dummy = (double)nChambersWithMinimalHits;
      if (dummy > 49.9)
        dummy = 49.9;
      mevnChambers1->Fill(dummy);
      dummy = (double)nSegments;
      if (dummy > 29.9)
        dummy = 29.9;
      mevnSegments1->Fill(dummy);
    }
  }

  // ----------------------
  // set the filter flag
  // ----------------------

  bool selectEvent = false;
  if ((nRecHits > 54) && (nChambersWithMinimalHits > 5)) {
    selectEvent = true;
  }

  // debug
  LogDebug("[CSCSkim]") << "----- nRecHits = " << nRecHits
                        << "\tnChambersWithMinimalHits = " << nChambersWithMinimalHits << "\tnSegments = " << nSegments
                        << "\tselect? " << selectEvent << std::endl;

  /*
  if (selectEvent) {
    std::cout << "\n==========================================================================\n"
	 << "\tmessy event!\n"
	 << "\t  " <<  nEventsAnalyzed
	 << "\trun " << iRun << "\tevent " << iEvent << std::endl;
    std::cout << "----- nRecHits = " << nRecHits
	 << "\tnChambersWithMinimalHits = " << nChambersWithMinimalHits
	 << "\tnSegments = " << nSegments 
	 << "\tselect? " << selectEvent << std::endl;
    for (int i = 0; i < 600; i++) {
      if (cntRecHit[i] > 0) {
	cout << "\t\t" << i << "\tcntRecHit= " << cntRecHit[i] << std::endl;
      }
    }
    std::cout << "==========================================================================\n\n" ;
  }
  */

  return selectEvent;
}

//============================================================
//
// Select events with DIGIs are a particular chamber.
//
//============================================================
bool CSCSkim::doCertainChamberSelection(edm::Handle<CSCWireDigiCollection> wires,
                                        edm::Handle<CSCStripDigiCollection> strips) {
  // Loop through the wire DIGIs, looking for a match
  bool certainChamberIsPresentInWires = false;
  for (CSCWireDigiCollection::DigiRangeIterator jw = wires->begin(); jw != wires->end(); jw++) {
    CSCDetId id = (CSCDetId)(*jw).first;
    int kEndcap = id.endcap();
    int kRing = id.ring();
    int kStation = id.station();
    int kChamber = id.chamber();
    if ((kEndcap == whichEndcap) && (kStation == whichStation) && (kRing == whichRing) && (kChamber == whichChamber)) {
      certainChamberIsPresentInWires = true;
    }
  }  // end wire loop

  // Loop through the strip DIGIs, looking for a match
  bool certainChamberIsPresentInStrips = false;
  for (CSCStripDigiCollection::DigiRangeIterator js = strips->begin(); js != strips->end(); js++) {
    CSCDetId id = (CSCDetId)(*js).first;
    int kEndcap = id.endcap();
    int kRing = id.ring();
    int kStation = id.station();
    int kChamber = id.chamber();
    if ((kEndcap == whichEndcap) && (kStation == whichStation) && (kRing == whichRing) && (kChamber == whichChamber)) {
      certainChamberIsPresentInStrips = true;
    }
  }

  bool certainChamberIsPresent = certainChamberIsPresentInWires || certainChamberIsPresentInStrips;

  return certainChamberIsPresent;
}

//============================================================
//
// Select events which *might* probe the DT-CSC overlap region.
//
//============================================================
bool CSCSkim::doDTOverlap(Handle<CSCSegmentCollection> cscSegments) {
  const float chisqMax = 100.;
  const int nhitsMin = 5;
  const int maxNSegments = 3;

  // initialize
  bool DTOverlapCandidate = false;
  int cntMEP13[36];
  int cntMEN13[36];
  int cntMEP22[36];
  int cntMEN22[36];
  int cntMEP32[36];
  int cntMEN32[36];
  for (int i = 0; i < 36; ++i) {
    cntMEP13[i] = 0;
    cntMEN13[i] = 0;
    cntMEP22[i] = 0;
    cntMEN22[i] = 0;
    cntMEP32[i] = 0;
    cntMEN32[i] = 0;
  }

  // -----------------------
  // loop over segments
  // -----------------------

  int nSegments = cscSegments->size();
  if (nSegments < 2)
    return DTOverlapCandidate;

  for (CSCSegmentCollection::const_iterator it = cscSegments->begin(); it != cscSegments->end(); it++) {
    // which chamber?
    CSCDetId id = (CSCDetId)(*it).cscDetId();
    int kEndcap = id.endcap();
    int kStation = id.station();
    int kRing = id.ring();
    int kChamber = id.chamber();
    // segment information
    float chisq = (*it).chi2();
    int nhits = (*it).nRecHits();
    bool goodSegment = (chisq < chisqMax) && (nhits >= nhitsMin);
    if (goodSegment) {
      if ((kStation == 1) && (kRing == 3)) {
        if (kEndcap == 1) {
          cntMEP13[kChamber - 1]++;
        }
        if (kEndcap == 2) {
          cntMEN13[kChamber - 1]++;
        }
      }
      if ((kStation == 2) && (kRing == 2)) {
        if (kEndcap == 1) {
          cntMEP22[kChamber - 1]++;
        }
        if (kEndcap == 2) {
          cntMEN22[kChamber - 1]++;
        }
      }
      if ((kStation == 3) && (kRing == 2)) {
        if (kEndcap == 1) {
          cntMEP32[kChamber - 1]++;
        }
        if (kEndcap == 2) {
          cntMEN32[kChamber - 1]++;
        }
      }
    }  // this is a good segment
  }  // end loop over segments

  // ---------------------------------------------
  // veto messy events
  // ---------------------------------------------
  bool tooManySegments = false;
  for (int i = 0; i < 36; ++i) {
    if ((cntMEP13[i] > maxNSegments) || (cntMEN13[i] > maxNSegments) || (cntMEP22[i] > maxNSegments) ||
        (cntMEN22[i] > maxNSegments) || (cntMEP32[i] > maxNSegments) || (cntMEN32[i] > maxNSegments))
      tooManySegments = true;
  }
  if (tooManySegments) {
    return DTOverlapCandidate;
  }

  // ---------------------------------------------
  // check for relevant matchup of segments
  // ---------------------------------------------
  bool matchup = false;
  for (int i = 0; i < 36; ++i) {
    if ((cntMEP13[i] > 0) && (cntMEP22[i] + cntMEP32[i] > 0)) {
      matchup = true;
    }
    if ((cntMEN13[i] > 0) && (cntMEN22[i] + cntMEN32[i] > 0)) {
      matchup = true;
    }
  }
  /*
  if (matchup) {
    std::cout << "\tYYY looks like a good event.  Select!\n";
    std::cout << "-- pos endcap --\n"
	 << "ME1/3: ";
    for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP13[k];}
    std::cout << "\nME2/2: ";
    for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP22[k];}
    std::cout << "\nME3/2: ";
    for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP32[k];}
    std::cout << std::endl;
  }
  */

  // set the selection flag
  DTOverlapCandidate = matchup;
  return DTOverlapCandidate;
}

//============================================================
//
// Select events which register in the inner parts of
// stations 1, 2, 3 and 4.
//
//============================================================
bool CSCSkim::doHaloLike(Handle<CSCSegmentCollection> cscSegments) {
  const float chisqMax = 100.;
  const int nhitsMin = 5;      // on a segment
  const int maxNSegments = 3;  // in a chamber

  // initialize
  bool HaloLike = false;
  int cntMEP11[36];
  int cntMEN11[36];
  int cntMEP12[36];
  int cntMEN12[36];
  int cntMEP21[36];
  int cntMEN21[36];
  int cntMEP31[36];
  int cntMEN31[36];
  int cntMEP41[36];
  int cntMEN41[36];
  for (int i = 0; i < 36; ++i) {
    cntMEP11[i] = 0;
    cntMEN11[i] = 0;
    cntMEP12[i] = 0;
    cntMEN12[i] = 0;
    cntMEP21[i] = 0;
    cntMEN21[i] = 0;
    cntMEP31[i] = 0;
    cntMEN31[i] = 0;
    cntMEP41[i] = 0;
    cntMEN41[i] = 0;
  }

  // -----------------------
  // loop over segments
  // -----------------------
  int nSegments = cscSegments->size();
  if (nSegments < 4)
    return HaloLike;

  for (CSCSegmentCollection::const_iterator it = cscSegments->begin(); it != cscSegments->end(); it++) {
    // which chamber?
    CSCDetId id = (CSCDetId)(*it).cscDetId();
    int kEndcap = id.endcap();
    int kStation = id.station();
    int kRing = id.ring();
    int kChamber = id.chamber();
    // segment information
    float chisq = (*it).chi2();
    int nhits = (*it).nRecHits();
    bool goodSegment = (chisq < chisqMax) && (nhits >= nhitsMin);
    if (goodSegment) {
      if ((kStation == 1) && (kRing == 1)) {
        if (kEndcap == 1) {
          cntMEP11[kChamber - 1]++;
        }
        if (kEndcap == 2) {
          cntMEN11[kChamber - 1]++;
        }
      }
      if ((kStation == 1) && (kRing == 2)) {
        if (kEndcap == 1) {
          cntMEP12[kChamber - 1]++;
        }
        if (kEndcap == 2) {
          cntMEN12[kChamber - 1]++;
        }
      }
      if ((kStation == 2) && (kRing == 1)) {
        if (kEndcap == 1) {
          cntMEP21[kChamber - 1]++;
        }
        if (kEndcap == 2) {
          cntMEN21[kChamber - 1]++;
        }
      }
      if ((kStation == 3) && (kRing == 1)) {
        if (kEndcap == 1) {
          cntMEP31[kChamber - 1]++;
        }
        if (kEndcap == 2) {
          cntMEN31[kChamber - 1]++;
        }
      }
      if ((kStation == 4) && (kRing == 1)) {
        if (kEndcap == 1) {
          cntMEP41[kChamber - 1]++;
        }
        if (kEndcap == 2) {
          cntMEN41[kChamber - 1]++;
        }
      }
    }  // this is a good segment
  }  // end loop over segments

  // ---------------------------------------------
  // veto messy events
  // ---------------------------------------------
  bool tooManySegments = false;
  for (int i = 0; i < 36; ++i) {
    if ((cntMEP11[i] > 3 * maxNSegments) || (cntMEN11[i] > 3 * maxNSegments) || (cntMEP12[i] > maxNSegments) ||
        (cntMEN12[i] > maxNSegments) || (cntMEP21[i] > maxNSegments) || (cntMEN21[i] > maxNSegments) ||
        (cntMEP31[i] > maxNSegments) || (cntMEN31[i] > maxNSegments) || (cntMEP41[i] > maxNSegments) ||
        (cntMEN41[i] > maxNSegments))
      tooManySegments = true;
  }
  if (tooManySegments) {
    return HaloLike;
  }

  // ---------------------------------------------
  // check for relevant matchup of segments
  // ---------------------------------------------
  bool matchup = false;
  for (int i = 0; i < 36; ++i) {
    if ((cntMEP11[i] + cntMEP12[i] > 0) && (cntMEP21[i] > 0) && (cntMEP31[i] > 0) && (cntMEP41[i] > 0)) {
      matchup = true;
    }
    if ((cntMEN11[i] + cntMEN12[i] > 0) && (cntMEN21[i] > 0) && (cntMEN31[i] > 0) && (cntMEN41[i] > 0)) {
      matchup = true;
    }
  }
  /*
  if (matchup) {
    std::cout << "\tYYY looks like a good event.  Select!\n";
    std::cout << "-- pos endcap --\n"
	 << "ME1/1: ";
    for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP11[k];}
    std::cout << "\nME1/2: ";
    for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP12[k];}
    std::cout << "\nME2/1: ";
    for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP21[k];}
    std::cout << "\nME3/1: ";
    for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP31[k];}
    std::cout << "\nME4/1: ";
    for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP41[k];}
    std::cout << std::endl;
    std::cout << "-- neg endcap --\n"
	 << "ME1/1: ";
    for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEN11[k];}
    std::cout << "\nME1/2: ";
    for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEN12[k];}
    std::cout << "\nME2/1: ";
    for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEN21[k];}
    std::cout << "\nME3/1: ";
    for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEN31[k];}
    std::cout << "\nME4/1: ";
    for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEN41[k];}
    std::cout << std::endl;
    std::cout << "\tn Analyzed = " << nEventsAnalyzed << "\tn Halo-like = " << nEventsHaloLike << std::endl;
  }
  */

  // set the selection flag
  HaloLike = matchup;
  return HaloLike;
}

//--------------------------------------------------------------
// select events with at least one "long" stand-alone muon
//--------------------------------------------------------------
bool CSCSkim::doLongSATrack(edm::Handle<reco::TrackCollection> saMuons) {
  const float zDistanceMax = 2500.;
  const float zDistanceMin = 700.;
  const int nCSCHitsMin = 25;
  const int nCSCHitsMax = 50;
  const float zInnerMax = 80000.;

  const int nNiceMuonsMin = 1;

  //
  // Loop through the track collection and test each one
  //

  int nNiceMuons = 0;

  for (reco::TrackCollection::const_iterator muon = saMuons->begin(); muon != saMuons->end(); ++muon) {
    // basic information
    math::XYZVector innerMo = muon->innerMomentum();
    GlobalVector im(innerMo.x(), innerMo.y(), innerMo.z());
    math::XYZPoint innerPo = muon->innerPosition();
    GlobalPoint ip(innerPo.x(), innerPo.y(), innerPo.z());
    math::XYZPoint outerPo = muon->outerPosition();
    GlobalPoint op(outerPo.x(), outerPo.y(), outerPo.z());
    float zInner = ip.z();
    float zOuter = op.z();
    float zDistance = fabs(zOuter - zInner);

    // loop over hits
    int nCSCHits = 0;
    for (trackingRecHit_iterator hit = muon->recHitsBegin(); hit != muon->recHitsEnd(); ++hit) {
      const DetId detId((*hit)->geographicalId());
      if (detId.det() == DetId::Muon) {
        if (detId.subdetId() == MuonSubdetId::CSC) {
          //CSCDetId cscId(detId.rawId());
          //int chamberId = cscId.chamber();
          nCSCHits++;
        }
      }
    }

    // is this a nice muon?
    if ((zDistance < zDistanceMax) && (zDistance > zDistanceMin) && (nCSCHits > nCSCHitsMin) &&
        (nCSCHits < nCSCHitsMax) && (min(fabs(zInner), fabs(zOuter)) < zInnerMax) &&
        (fabs(innerMo.z()) > 0.000000001)) {
      nNiceMuons++;
    }
  }

  bool select = (nNiceMuons >= nNiceMuonsMin);

  return select;
}

//============================================================
//
// Select events which are good for B-field studies.
//
// These events have a good track in the tracker.
//
//  D.Dibur and M.Schmitt
//============================================================
bool CSCSkim::doBFieldStudySelection(edm::Handle<reco::TrackCollection> saMuons,
                                     edm::Handle<reco::TrackCollection> tracks,
                                     edm::Handle<reco::MuonCollection> gMuons) {
  bool acceptThisEvent = false;

  //-----------------------------------
  // examine the stand-alone tracks
  //-----------------------------------
  int nGoodSAMuons = 0;
  for (reco::TrackCollection::const_iterator muon = saMuons->begin(); muon != saMuons->end(); ++muon) {
    float preco = muon->p();

    math::XYZPoint innerPo = muon->innerPosition();
    GlobalPoint iPnt(innerPo.x(), innerPo.y(), innerPo.z());
    math::XYZPoint outerPo = muon->outerPosition();
    GlobalPoint oPnt(outerPo.x(), outerPo.y(), outerPo.z());
    float zLength = abs(iPnt.z() - oPnt.z());

    math::XYZVector innerMom = muon->innerMomentum();
    GlobalVector iP(innerMom.x(), innerMom.y(), innerMom.z());
    math::XYZVector outerMom = muon->outerMomentum();
    GlobalVector oP(outerMom.x(), outerMom.y(), outerMom.z());

    const float zRef = 300.;
    float xExt = 10000.;
    float yExt = 10000.;
    if (abs(oPnt.z()) < abs(iPnt.z())) {
      float deltaZ = 0.;
      if (oPnt.z() > 0) {
        deltaZ = zRef - oPnt.z();
      } else {
        deltaZ = -zRef - oPnt.z();
      }
      xExt = oPnt.x() + deltaZ * oP.x() / oP.z();
      yExt = oPnt.y() + deltaZ * oP.y() / oP.z();
    } else {
      float deltaZ = 0.;
      if (iPnt.z() > 0) {
        deltaZ = zRef - iPnt.z();
      } else {
        deltaZ = -zRef - iPnt.z();
      }
      xExt = iPnt.x() + deltaZ * iP.x() / iP.z();
      yExt = iPnt.y() + deltaZ * iP.y() / iP.z();
    }
    float rExt = sqrt(xExt * xExt + yExt * yExt);

    int nCSCHits = 0;
    for (trackingRecHit_iterator hit = muon->recHitsBegin(); hit != muon->recHitsEnd(); ++hit) {
      const DetId detId((*hit)->geographicalId());
      if (detId.det() == DetId::Muon) {
        if (detId.subdetId() == MuonSubdetId::CSC) {
          nCSCHits++;
        }
      }
    }  // end loop over hits

    float zInner = -1.;
    if (nCSCHits >= nCSCHitsMin) {
      if (abs(iPnt.z()) < abs(iPnt.z())) {
        zInner = iPnt.z();
      } else {
        zInner = oPnt.z();
      }
    }

    bool goodSAMuon = (preco > pMin) && (zLength > zLengthMin) && (nCSCHits >= nCSCHitsMin) && (zInner < zInnerMax) &&
                      (rExt < rExtMax);

    if (goodSAMuon) {
      nGoodSAMuons++;
    }

  }  // end loop over stand-alone muon collection

  //-----------------------------------
  // examine the tracker tracks
  //-----------------------------------
  int nGoodTracks = 0;
  for (reco::TrackCollection::const_iterator track = tracks->begin(); track != tracks->end(); ++track) {
    float preco = track->p();
    int n = track->recHitsSize();

    math::XYZPoint innerPo = track->innerPosition();
    GlobalPoint iPnt(innerPo.x(), innerPo.y(), innerPo.z());
    math::XYZPoint outerPo = track->outerPosition();
    GlobalPoint oPnt(outerPo.x(), outerPo.y(), outerPo.z());
    float zLength = abs(iPnt.z() - oPnt.z());

    math::XYZVector innerMom = track->innerMomentum();
    GlobalVector iP(innerMom.x(), innerMom.y(), innerMom.z());
    math::XYZVector outerMom = track->outerMomentum();
    GlobalVector oP(outerMom.x(), outerMom.y(), outerMom.z());

    const float zRef = 300.;
    float xExt = 10000.;
    float yExt = 10000.;
    if (abs(oPnt.z()) > abs(iPnt.z())) {
      float deltaZ = 0.;
      if (oPnt.z() > 0) {
        deltaZ = zRef - oPnt.z();
      } else {
        deltaZ = -zRef - oPnt.z();
      }
      xExt = oPnt.x() + deltaZ * oP.x() / oP.z();
      yExt = oPnt.y() + deltaZ * oP.y() / oP.z();
    } else {
      float deltaZ = 0.;
      if (iPnt.z() > 0) {
        deltaZ = zRef - iPnt.z();
      } else {
        deltaZ = -zRef - iPnt.z();
      }
      xExt = iPnt.x() + deltaZ * iP.x() / iP.z();
      yExt = iPnt.y() + deltaZ * iP.y() / iP.z();
    }
    float rExt = sqrt(xExt * xExt + yExt * yExt);

    bool goodTrack = (preco > pMin) && (n >= nTrHitsMin) && (zLength > zLengthTrMin) && (rExt < rExtMax);

    if (goodTrack) {
      nGoodTracks++;
    }

  }  // end loop over tracker tracks

  //-----------------------------------
  // examine the global muons
  //-----------------------------------
  int nGoodGlobalMuons = 0;
  for (reco::MuonCollection::const_iterator global = gMuons->begin(); global != gMuons->end(); ++global) {
    if (global->isGlobalMuon()) {
      float pDef = global->p();
      float redChiSq = global->globalTrack()->normalizedChi2();
      const reco::HitPattern& hp = (global->globalTrack())->hitPattern();
      // int nTotalHits = hp.numberOfHits();
      //    int nValidHits = hp.numberOfValidHits();
      int nTrackerHits = hp.numberOfValidTrackerHits();
      // int nPixelHits   = hp.numberOfValidPixelHits();
      // int nStripHits   = hp.numberOfValidStripHits();

      int nCSCHits = 0;
      for (trackingRecHit_iterator hit = (global->globalTrack())->recHitsBegin();
           hit != (global->globalTrack())->recHitsEnd();
           ++hit) {
        const DetId detId((*hit)->geographicalId());
        if (detId.det() == DetId::Muon) {
          if (detId.subdetId() == MuonSubdetId::CSC) {
            nCSCHits++;
          }
        }
      }  // end loop over hits

      bool goodGlobalMuon =
          (pDef > pMin) && (nTrackerHits >= nValidHitsMin) && (nCSCHits >= nCSCHitsMin) && (redChiSq < redChiSqMax);

      if (goodGlobalMuon) {
        nGoodGlobalMuons++;
      }

    }  // this is a global muon
  }  // end loop over stand-alone muon collection

  //-----------------------------------
  // do we accept this event?
  //-----------------------------------

  acceptThisEvent = ((nGoodSAMuons > 0) && (nGoodTracks > 0)) || (nGoodGlobalMuons > 0);

  return acceptThisEvent;
}

//--------------------------------------------------------------
// Compute a serial number for the chamber.
// This is useful when filling histograms and working with arrays.
//--------------------------------------------------------------
int CSCSkim::chamberSerial(int kEndcap, int kStation, int kRing, int kChamber) {
  int kSerial = kChamber;
  if (kStation == 1 && kRing == 1) {
    kSerial = kChamber;
  }
  if (kStation == 1 && kRing == 2) {
    kSerial = kChamber + 36;
  }
  if (kStation == 1 && kRing == 3) {
    kSerial = kChamber + 72;
  }
  if (kStation == 1 && kRing == 4) {
    kSerial = kChamber;
  }
  if (kStation == 2 && kRing == 1) {
    kSerial = kChamber + 108;
  }
  if (kStation == 2 && kRing == 2) {
    kSerial = kChamber + 126;
  }
  if (kStation == 3 && kRing == 1) {
    kSerial = kChamber + 162;
  }
  if (kStation == 3 && kRing == 2) {
    kSerial = kChamber + 180;
  }
  if (kStation == 4 && kRing == 1) {
    kSerial = kChamber + 216;
  }
  if (kStation == 4 && kRing == 2) {
    kSerial = kChamber + 234;
  }  // one day...
  if (kEndcap == 2) {
    kSerial = kSerial + 300;
  }
  return kSerial;
}

//define this as a plug-in
DEFINE_FWK_MODULE(CSCSkim);