1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
|
// -*- C++ -*-
//
// Package: CSCSkim
// Class: CSCSkim
//
/**\class CSCSkim CSCSkim.cc RecoLocalMuon/CSCSkim/src/CSCSkim.cc
Description: Offline skim module for CSC cosmic ray data
Implementation:
<Notes on implementation>
*/
//
// Original Author: Michael Schmitt
// Created: Sat Jul 12 17:43:33 CEST 2008
//
//
//======================================================================
//
// CSCSkim:
//
// A simple skim module for extracting generally useful events from
// the cosmic-ray runs (CRUZET-n and CRAFT). The selected events
// should be useful for most CSC-DPG and muon-POG studies. However,
// the selection requirements may bias the sample with respect to
// trigger requirements and certain noise and efficiency-related
// studies.
//
// Types of skims: (typeOfSkim control word)
// 1 = loose skim demanding hit chambers and/or segments
// 2 = ask for hit chambers in both endcaps
// 3 = segments in neighboring chambers - good for alignment
// 4 = messy events
// 5 = select events with DIGIs from one particular chamber
// 6 = overlap with DT
// 7 = nearly horizontal track going through ME1/1,2/1,3/1,4/1
// 8 = ask for one long cosmic stand-alone muon track
// 9 = selection for magnetic field studies
//
//
//======================================================================
#include "DPGAnalysis/Skims/interface/CSCSkim.h"
using namespace std;
using namespace edm;
//===================
// CONSTRUCTOR
//===================
CSCSkim::CSCSkim(const edm::ParameterSet& pset) : m_CSCGeomToken(esConsumes()) {
// tokens from tags
// Really should define the wire and digi tags in config, but for now, to avoid having to modify
// multiple config files, just hard-code those tags, to be equivalent to the pre-consumes code
// wds_token = consumes<CSCWireDigiCollection>(pset.getParameter<InputTag>("simWireDigiTag"));
// sds_token = consumes<CSCStripDigiCollection>(pset.getParameter<InputTag>("simStripDigiTag"));
// wdr_token = consumes<CSCWireDigiCollection>(pset.getParameter<InputTag>("wireDigiTag"));
// sdr_token = consumes<CSCStripDigiCollection>(pset.getParameter<InputTag>("stripDigiTag"));
wds_token = consumes<CSCWireDigiCollection>(edm::InputTag("simMuonCSCDigis", "MuonCSCWireDigi"));
sds_token = consumes<CSCStripDigiCollection>(edm::InputTag("simMuonCSCDigis", "MuonCSCStripDigi"));
wdr_token = consumes<CSCWireDigiCollection>(edm::InputTag("muonCSCDigis", "MuonCSCWireDigi"));
sdr_token = consumes<CSCStripDigiCollection>(edm::InputTag("muonCSCDigis", "MuonCSCStripDigi"));
rh_token = consumes<CSCRecHit2DCollection>(pset.getParameter<InputTag>("cscRecHitTag"));
seg_token = consumes<CSCSegmentCollection>(pset.getParameter<InputTag>("cscSegmentTag"));
sam_token = consumes<reco::TrackCollection>(pset.getParameter<InputTag>("SAMuonTag"));
trk_token = consumes<reco::TrackCollection>(pset.getParameter<InputTag>("trackTag"));
glm_token = consumes<reco::MuonCollection>(pset.getParameter<InputTag>("GLBMuonTag"));
// Get the various input parameters
outputFileName = pset.getUntrackedParameter<std::string>("outputFileName", "outputSkim.root");
histogramFileName = pset.getUntrackedParameter<std::string>("histogramFileName", "histos.root");
typeOfSkim = pset.getUntrackedParameter<int>("typeOfSkim", 1);
nLayersWithHitsMinimum = pset.getUntrackedParameter<int>("nLayersWithHitsMinimum", 3);
minimumHitChambers = pset.getUntrackedParameter<int>("minimumHitChambers", 1);
minimumSegments = pset.getUntrackedParameter<int>("minimumSegments", 3);
demandChambersBothSides = pset.getUntrackedParameter<bool>("demandChambersBothSides", false);
makeHistograms = pset.getUntrackedParameter<bool>("makeHistograms", false);
makeHistogramsForMessyEvents = pset.getUntrackedParameter<bool>("makeHistogramsForMessyEvebts", false);
whichEndcap = pset.getUntrackedParameter<int>("whichEndcap", 2);
whichStation = pset.getUntrackedParameter<int>("whichStation", 3);
whichRing = pset.getUntrackedParameter<int>("whichRing", 2);
whichChamber = pset.getUntrackedParameter<int>("whichChamber", 24);
// for BStudy selection (skim type 9)
pMin = pset.getUntrackedParameter<double>("pMin", 3.);
zLengthMin = pset.getUntrackedParameter<double>("zLengthMin", 200.);
nCSCHitsMin = pset.getUntrackedParameter<int>("nCSCHitsMin", 9);
zInnerMax = pset.getUntrackedParameter<double>("zInnerMax", 9000.);
nTrHitsMin = pset.getUntrackedParameter<int>("nTrHitsMin", 8);
zLengthTrMin = pset.getUntrackedParameter<double>("zLengthTrMin", 180.);
rExtMax = pset.getUntrackedParameter<double>("rExtMax", 3000.);
redChiSqMax = pset.getUntrackedParameter<double>("redChiSqMax", 20.);
nValidHitsMin = pset.getUntrackedParameter<int>("nValidHitsMin", 8);
LogInfo("[CSCSkim] Setup") << "\n\t===== CSCSkim =====\n"
<< "\t\ttype of skim ...............................\t" << typeOfSkim
<< "\t\tminimum number of layers with hits .........\t" << nLayersWithHitsMinimum
<< "\n\t\tminimum number of chambers w/ hit layers..\t" << minimumHitChambers
<< "\n\t\tminimum number of segments ...............\t" << minimumSegments
<< "\n\t\tdemand chambers on both sides.............\t" << demandChambersBothSides
<< "\n\t\tmake histograms...........................\t" << makeHistograms
<< "\n\t\t..for messy events........................\t" << makeHistogramsForMessyEvents
<< "\n\t===================\n\n";
}
//===================
// DESTRUCTOR
//===================
CSCSkim::~CSCSkim() {}
//================
// BEGIN JOB
//================
void CSCSkim::beginJob() {
// set counters to zero
nEventsAnalyzed = 0;
nEventsSelected = 0;
nEventsChambersBothSides = 0;
nEventsOverlappingChambers = 0;
nEventsMessy = 0;
nEventsCertainChamber = 0;
nEventsDTOverlap = 0;
nEventsHaloLike = 0;
nEventsLongSATrack = 0;
nEventsForBFieldStudies = 0;
iRun = 0;
iEvent = 0;
if (makeHistograms || makeHistogramsForMessyEvents) {
// Create the root file for the histograms
theHistogramFile = new TFile(histogramFileName.c_str(), "RECREATE");
theHistogramFile->cd();
if (makeHistograms) {
// book histograms for the skimming module
hxnRecHits = new TH1F("hxnRecHits", "n RecHits", 61, -0.5, 60.5);
hxnSegments = new TH1F("hxnSegments", "n Segments", 11, -0.5, 10.5);
hxnHitChambers = new TH1F("hxnHitsChambers", "n chambers with hits", 11, -0.5, 10.5);
hxnRecHitsSel = new TH1F("hxnRecHitsSel", "n RecHits selected", 61, -0.5, 60.5);
xxP = new TH1F("xxP", "P global", 100, 0., 200.);
xxnValidHits = new TH1F("xxnValidHits", "n valid hits global", 61, -0.5, 60.5);
xxnTrackerHits = new TH1F("xxnTrackerHits", "n tracker hits global", 61, -0.5, 60.5);
xxnCSCHits = new TH1F("xxnCSCHits", "n CSC hits global", 41, -0.5, 40.5);
xxredChiSq = new TH1F("xxredChiSq", "red chisq global", 100, 0., 100.);
}
if (makeHistogramsForMessyEvents) {
// book histograms for the messy event skimming module
mevnRecHits0 = new TH1F("mevnRecHits0", "n RecHits", 121, -0.5, 120.5);
mevnChambers0 = new TH1F("mevnChambers0", "n chambers with hits", 21, -0.5, 20.5);
mevnSegments0 = new TH1F("mevnSegments0", "n Segments", 21, -0.5, 20.5);
mevnRecHits1 = new TH1F("mevnRecHits1", "n RecHits", 100, 0., 300.);
mevnChambers1 = new TH1F("mevnChambers1", "n chambers with hits", 50, 0., 50.);
mevnSegments1 = new TH1F("mevnSegments1", "n Segments", 30, 0., 30.);
}
}
}
//================
// END JOB
//================
void CSCSkim::endJob() {
// Write out results
float fraction = 0.;
if (nEventsAnalyzed > 0) {
fraction = (float)nEventsSelected / (float)nEventsAnalyzed;
}
LogInfo("[CSCSkim] Summary") << "\n\n\t====== CSCSkim ==========================================================\n"
<< "\t\ttype of skim ...............................\t" << typeOfSkim << "\n"
<< "\t\tevents analyzed ..............\t" << nEventsAnalyzed << "\n"
<< "\t\tevents selected ..............\t" << nEventsSelected
<< "\tfraction= " << fraction << std::endl
<< "\t\tevents chambers both sides ...\t" << nEventsChambersBothSides << "\n"
<< "\t\tevents w/ overlaps .......... \t" << nEventsOverlappingChambers << "\n"
<< "\t\tevents lots of hit chambers . \t" << nEventsMessy << "\n"
<< "\t\tevents from certain chamber . \t" << nEventsCertainChamber << "\n"
<< "\t\tevents in DT-CSC overlap .... \t" << nEventsDTOverlap << "\n"
<< "\t\tevents halo-like ............ \t" << nEventsHaloLike << "\n"
<< "\t\tevents w/ long SA track ..... \t" << nEventsLongSATrack << "\n"
<< "\t\tevents good for BField ..... \t" << nEventsForBFieldStudies << "\n"
<< "\t=========================================================================\n\n";
if (makeHistograms || makeHistogramsForMessyEvents) {
// Write the histos to file
LogDebug("[CSCSkim]") << "======= write out my histograms ====\n";
theHistogramFile->cd();
if (makeHistograms) {
hxnRecHits->Write();
hxnSegments->Write();
hxnHitChambers->Write();
hxnRecHitsSel->Write();
}
if (makeHistogramsForMessyEvents) {
mevnRecHits0->Write();
mevnChambers0->Write();
mevnSegments0->Write();
mevnRecHits1->Write();
mevnChambers1->Write();
mevnSegments1->Write();
}
theHistogramFile->Close();
}
}
//================
// FILTER MAIN
//================
bool CSCSkim::filter(edm::Event& event, const edm::EventSetup& eventSetup) {
// increment counter
nEventsAnalyzed++;
iRun = event.id().run();
iEvent = event.id().event();
LogDebug("[CSCSkim] EventInfo") << "Run: " << iRun << "\tEvent: " << iEvent << "\tn Analyzed: " << nEventsAnalyzed;
// Get the CSC Geometry :
ESHandle<CSCGeometry> cscGeom = eventSetup.getHandle(m_CSCGeomToken);
// Get the DIGI collections
edm::Handle<CSCWireDigiCollection> wires;
edm::Handle<CSCStripDigiCollection> strips;
if (event.eventAuxiliary().isRealData()) {
event.getByToken(wdr_token, wires);
event.getByToken(sdr_token, strips);
} else {
event.getByToken(wds_token, wires);
event.getByToken(sds_token, strips);
}
// Get the RecHits collection :
Handle<CSCRecHit2DCollection> cscRecHits;
event.getByToken(rh_token, cscRecHits);
// get CSC segment collection
Handle<CSCSegmentCollection> cscSegments;
event.getByToken(seg_token, cscSegments);
// get the cosmic muons collection
Handle<reco::TrackCollection> saMuons;
if (typeOfSkim == 8) {
event.getByToken(sam_token, saMuons);
}
// get the stand-alone muons collection
Handle<reco::TrackCollection> tracks;
Handle<reco::MuonCollection> gMuons;
if (typeOfSkim == 9) {
event.getByToken(sam_token, saMuons);
event.getByToken(trk_token, tracks);
event.getByToken(glm_token, gMuons);
}
//======================================
// evaluate the skimming routines
//======================================
// basic skimming
bool basicEvent = false;
if (typeOfSkim == 1 || typeOfSkim == 2) {
basicEvent = doCSCSkimming(cscRecHits, cscSegments);
}
// overlapping chamber skim
bool goodOverlapEvent = false;
if (typeOfSkim == 3) {
goodOverlapEvent = doOverlapSkimming(cscSegments);
if (goodOverlapEvent) {
nEventsOverlappingChambers++;
}
}
// messy events skim
bool messyEvent = false;
if (typeOfSkim == 4) {
messyEvent = doMessyEventSkimming(cscRecHits, cscSegments);
if (messyEvent) {
nEventsMessy++;
}
}
// select events with DIGIs in a certain chamber
bool hasChamber = false;
if (typeOfSkim == 5) {
hasChamber = doCertainChamberSelection(wires, strips);
if (hasChamber) {
nEventsCertainChamber++;
}
}
// select events in the DT-CSC overlap region
bool DTOverlapCandidate = false;
if (typeOfSkim == 6) {
DTOverlapCandidate = doDTOverlap(cscSegments);
if (DTOverlapCandidate) {
nEventsDTOverlap++;
}
}
// select halo-like events
bool HaloLike = false;
if (typeOfSkim == 7) {
HaloLike = doHaloLike(cscSegments);
if (HaloLike) {
nEventsHaloLike++;
}
}
// select long cosmic tracks
bool LongSATrack = false;
if (typeOfSkim == 8) {
LongSATrack = doLongSATrack(saMuons);
if (LongSATrack) {
nEventsLongSATrack++;
}
}
// select events suitable for a B-field study. They have tracks in the tracker.
bool GoodForBFieldStudy = false;
if (typeOfSkim == 9) {
GoodForBFieldStudy = doBFieldStudySelection(saMuons, tracks, gMuons);
if (GoodForBFieldStudy) {
nEventsForBFieldStudies++;
}
}
// set filter flag
bool selectThisEvent = false;
if (typeOfSkim == 1 || typeOfSkim == 2) {
selectThisEvent = basicEvent;
}
if (typeOfSkim == 3) {
selectThisEvent = goodOverlapEvent;
}
if (typeOfSkim == 4) {
selectThisEvent = messyEvent;
}
if (typeOfSkim == 5) {
selectThisEvent = hasChamber;
}
if (typeOfSkim == 6) {
selectThisEvent = DTOverlapCandidate;
}
if (typeOfSkim == 7) {
selectThisEvent = HaloLike;
}
if (typeOfSkim == 8) {
selectThisEvent = LongSATrack;
}
if (typeOfSkim == 9) {
selectThisEvent = GoodForBFieldStudy;
}
if (selectThisEvent) {
nEventsSelected++;
}
return selectThisEvent;
}
// ==============================================
//
// CSC Skimming
//
// ==============================================
bool CSCSkim::doCSCSkimming(edm::Handle<CSCRecHit2DCollection> cscRecHits,
edm::Handle<CSCSegmentCollection> cscSegments) {
// how many RecHits in the collection?
int nRecHits = cscRecHits->size();
// zero the recHit counter
int cntRecHit[600];
for (int i = 0; i < 600; i++) {
cntRecHit[i] = 0;
}
// ---------------------
// Loop over rechits
// ---------------------
CSCRecHit2DCollection::const_iterator recIt;
for (recIt = cscRecHits->begin(); recIt != cscRecHits->end(); recIt++) {
// which chamber is it?
CSCDetId idrec = (CSCDetId)(*recIt).cscDetId();
int kEndcap = idrec.endcap();
int kRing = idrec.ring();
int kStation = idrec.station();
int kChamber = idrec.chamber();
int kLayer = idrec.layer();
// compute chamber serial number
int kSerial = chamberSerial(kEndcap, kStation, kRing, kChamber);
// increment recHit counter
// (each layer is represented by a different power of 10)
int kDigit = (int)pow((float)10., (float)(kLayer - 1));
cntRecHit[kSerial] += kDigit;
} //end rechit loop
// ------------------------------------------------------
// Are there chambers with the minimum number of hits?
// ------------------------------------------------------
int nChambersWithMinimalHits = 0;
int nChambersWithMinimalHitsPOS = 0;
int nChambersWithMinimalHitsNEG = 0;
if (nRecHits > 0) {
for (int i = 0; i < 600; i++) {
if (cntRecHit[i] > 0) {
int nLayersWithHits = 0;
float dummy = (float)cntRecHit[i];
for (int j = 5; j > -1; j--) {
float digit = dummy / pow((float)10., (float)j);
int kCount = (int)digit;
if (kCount > 0)
nLayersWithHits++;
dummy = dummy - ((float)kCount) * pow((float)10., (float)j);
}
if (nLayersWithHits > nLayersWithHitsMinimum) {
if (i < 300) {
nChambersWithMinimalHitsPOS++;
} else {
nChambersWithMinimalHitsNEG++;
}
}
}
}
nChambersWithMinimalHits = nChambersWithMinimalHitsPOS + nChambersWithMinimalHitsNEG;
}
// how many Segments?
int nSegments = cscSegments->size();
// ----------------------
// fill histograms
// ----------------------
if (makeHistograms) {
hxnRecHits->Fill(nRecHits);
if (nRecHits > 0) {
hxnSegments->Fill(nSegments);
hxnHitChambers->Fill(nChambersWithMinimalHits);
}
if (nChambersWithMinimalHits > 0) {
hxnRecHitsSel->Fill(nRecHits);
}
}
// ----------------------
// set the filter flag
// ----------------------
bool basicEvent = (nChambersWithMinimalHits >= minimumHitChambers) && (nSegments >= minimumSegments);
bool chambersOnBothSides =
((nChambersWithMinimalHitsPOS >= minimumHitChambers) && (nChambersWithMinimalHitsNEG >= minimumHitChambers));
if (chambersOnBothSides) {
nEventsChambersBothSides++;
}
bool selectEvent = false;
if (typeOfSkim == 1) {
selectEvent = basicEvent;
}
if (typeOfSkim == 2) {
selectEvent = chambersOnBothSides;
}
// debug
LogDebug("[CSCSkim]") << "----- nRecHits = " << nRecHits
<< "\tnChambersWithMinimalHits = " << nChambersWithMinimalHits << "\tnSegments = " << nSegments
<< "\tselect? " << selectEvent << std::endl;
/*
if ((nChambersWithMinimalHitsPOS >= minimumHitChambers) && (nChambersWithMinimalHitsNEG >= minimumHitChambers)) {
std::cout << "\n==========================================================================\n"
<< "\tinteresting event - chambers hit on both sides\n"
<< "\t " << nEventsAnalyzed
<< "\trun " << iRun << "\tevent " << iEvent << std::endl;
std::cout << "----- nRecHits = " << nRecHits
<< "\tnChambersWithMinimalHits = " << nChambersWithMinimalHits
<< "\tnSegments = " << nSegments
<< "\tselect? " << selectEvent << std::endl;
for (int i = 0; i < 600; i++) {
if (cntRecHit[i] > 0) {
cout << "\t\t" << i << "\tcntRecHit= " << cntRecHit[i] << std::endl;
}
}
std::cout << "==========================================================================\n\n" ;
}
*/
return selectEvent;
}
//-------------------------------------------------------------------------------
// A module to select events useful in aligning chambers relative to each other
// using the overlap regions at the edges (in Xlocal) of the chamber.
//-------------------------------------------------------------------------------
bool CSCSkim::doOverlapSkimming(edm::Handle<CSCSegmentCollection> cscSegments) {
const int nhitsMinimum = 4;
const float chisqMaximum = 100.;
const int nAllMaximum = 3;
// how many Segments?
// int nSegments = cscSegments->size();
// zero arrays
int nAll[600];
int nGood[600];
for (int i = 0; i < 600; i++) {
nAll[i] = 0;
nGood[i] = 0;
}
// -----------------------
// loop over segments
// -----------------------
for (CSCSegmentCollection::const_iterator it = cscSegments->begin(); it != cscSegments->end(); it++) {
// which chamber?
CSCDetId id = (CSCDetId)(*it).cscDetId();
int kEndcap = id.endcap();
int kStation = id.station();
int kRing = id.ring();
int kChamber = id.chamber();
int kSerial = chamberSerial(kEndcap, kStation, kRing, kChamber);
// segment information
float chisq = (*it).chi2();
int nhits = (*it).nRecHits();
// is this a good segment?
bool goodSegment = (nhits >= nhitsMinimum) && (chisq < chisqMaximum);
/*
LocalPoint localPos = (*it).localPosition();
float segX = localPos.x();
float segY = localPos.y();
std::cout << "E/S/R/Ch: " << kEndcap << "/" << kStation << "/" << kRing << "/" << kChamber
<< "\tnhits/chisq: " << nhits << "/" << chisq
<< "\tX/Y: " << segX << "/" << segY
<< "\tgood? " << goodSegment << std::endl;
*/
// count
nAll[kSerial - 1]++;
if (goodSegment)
nGood[kSerial]++;
} // end loop over segments
//----------------------
// select the event
//----------------------
// does any chamber have too many segments?
bool messyChamber = false;
for (int i = 0; i < 600; i++) {
if (nAll[i] > nAllMaximum)
messyChamber = true;
}
// are there consecutive chambers with good segments
// (This is a little sloppy but is probably fine for skimming...)
bool consecutiveChambers = false;
for (int i = 0; i < 599; i++) {
if ((nGood[i] > 0) && (nGood[i + 1] > 0))
consecutiveChambers = true;
}
bool selectThisEvent = !messyChamber && consecutiveChambers;
return selectThisEvent;
}
//============================================================
//
// This module selects events with a large numbere
// of recHits and larger number of chambers with hits.
//
//============================================================
bool CSCSkim::doMessyEventSkimming(edm::Handle<CSCRecHit2DCollection> cscRecHits,
edm::Handle<CSCSegmentCollection> cscSegments) {
// how many RecHits in the collection?
int nRecHits = cscRecHits->size();
// zero the recHit counter
int cntRecHit[600];
for (int i = 0; i < 600; i++) {
cntRecHit[i] = 0;
}
// ---------------------
// Loop over rechits
// ---------------------
CSCRecHit2DCollection::const_iterator recIt;
for (recIt = cscRecHits->begin(); recIt != cscRecHits->end(); recIt++) {
// which chamber is it?
CSCDetId idrec = (CSCDetId)(*recIt).cscDetId();
int kEndcap = idrec.endcap();
int kRing = idrec.ring();
int kStation = idrec.station();
int kChamber = idrec.chamber();
int kLayer = idrec.layer();
// compute chamber serial number
int kSerial = chamberSerial(kEndcap, kStation, kRing, kChamber);
// increment recHit counter
// (each layer is represented by a different power of 10)
int kDigit = (int)pow((float)10., (float)(kLayer - 1));
cntRecHit[kSerial] += kDigit;
} //end rechit loop
// ------------------------------------------------------
// Are there chambers with the minimum number of hits?
// ------------------------------------------------------
int nChambersWithMinimalHits = 0;
int nChambersWithMinimalHitsPOS = 0;
int nChambersWithMinimalHitsNEG = 0;
if (nRecHits > 0) {
for (int i = 0; i < 600; i++) {
if (cntRecHit[i] > 0) {
int nLayersWithHits = 0;
float dummy = (float)cntRecHit[i];
for (int j = 5; j > -1; j--) {
float digit = dummy / pow((float)10., (float)j);
int kCount = (int)digit;
if (kCount > 0)
nLayersWithHits++;
dummy = dummy - ((float)kCount) * pow((float)10., (float)j);
}
if (nLayersWithHits > nLayersWithHitsMinimum) {
if (i < 300) {
nChambersWithMinimalHitsPOS++;
} else {
nChambersWithMinimalHitsNEG++;
}
}
}
}
nChambersWithMinimalHits = nChambersWithMinimalHitsPOS + nChambersWithMinimalHitsNEG;
}
// how many Segments?
int nSegments = cscSegments->size();
// ----------------------
// fill histograms
// ----------------------
if (makeHistogramsForMessyEvents) {
if (nRecHits > 8) {
mevnRecHits0->Fill(nRecHits);
mevnChambers0->Fill(nChambersWithMinimalHits);
mevnSegments0->Fill(nSegments);
}
if (nRecHits > 54) {
double dummy = (double)nRecHits;
if (dummy > 299.9)
dummy = 299.9;
mevnRecHits1->Fill(dummy);
dummy = (double)nChambersWithMinimalHits;
if (dummy > 49.9)
dummy = 49.9;
mevnChambers1->Fill(dummy);
dummy = (double)nSegments;
if (dummy > 29.9)
dummy = 29.9;
mevnSegments1->Fill(dummy);
}
}
// ----------------------
// set the filter flag
// ----------------------
bool selectEvent = false;
if ((nRecHits > 54) && (nChambersWithMinimalHits > 5)) {
selectEvent = true;
}
// debug
LogDebug("[CSCSkim]") << "----- nRecHits = " << nRecHits
<< "\tnChambersWithMinimalHits = " << nChambersWithMinimalHits << "\tnSegments = " << nSegments
<< "\tselect? " << selectEvent << std::endl;
/*
if (selectEvent) {
std::cout << "\n==========================================================================\n"
<< "\tmessy event!\n"
<< "\t " << nEventsAnalyzed
<< "\trun " << iRun << "\tevent " << iEvent << std::endl;
std::cout << "----- nRecHits = " << nRecHits
<< "\tnChambersWithMinimalHits = " << nChambersWithMinimalHits
<< "\tnSegments = " << nSegments
<< "\tselect? " << selectEvent << std::endl;
for (int i = 0; i < 600; i++) {
if (cntRecHit[i] > 0) {
cout << "\t\t" << i << "\tcntRecHit= " << cntRecHit[i] << std::endl;
}
}
std::cout << "==========================================================================\n\n" ;
}
*/
return selectEvent;
}
//============================================================
//
// Select events with DIGIs are a particular chamber.
//
//============================================================
bool CSCSkim::doCertainChamberSelection(edm::Handle<CSCWireDigiCollection> wires,
edm::Handle<CSCStripDigiCollection> strips) {
// Loop through the wire DIGIs, looking for a match
bool certainChamberIsPresentInWires = false;
for (CSCWireDigiCollection::DigiRangeIterator jw = wires->begin(); jw != wires->end(); jw++) {
CSCDetId id = (CSCDetId)(*jw).first;
int kEndcap = id.endcap();
int kRing = id.ring();
int kStation = id.station();
int kChamber = id.chamber();
if ((kEndcap == whichEndcap) && (kStation == whichStation) && (kRing == whichRing) && (kChamber == whichChamber)) {
certainChamberIsPresentInWires = true;
}
} // end wire loop
// Loop through the strip DIGIs, looking for a match
bool certainChamberIsPresentInStrips = false;
for (CSCStripDigiCollection::DigiRangeIterator js = strips->begin(); js != strips->end(); js++) {
CSCDetId id = (CSCDetId)(*js).first;
int kEndcap = id.endcap();
int kRing = id.ring();
int kStation = id.station();
int kChamber = id.chamber();
if ((kEndcap == whichEndcap) && (kStation == whichStation) && (kRing == whichRing) && (kChamber == whichChamber)) {
certainChamberIsPresentInStrips = true;
}
}
bool certainChamberIsPresent = certainChamberIsPresentInWires || certainChamberIsPresentInStrips;
return certainChamberIsPresent;
}
//============================================================
//
// Select events which *might* probe the DT-CSC overlap region.
//
//============================================================
bool CSCSkim::doDTOverlap(Handle<CSCSegmentCollection> cscSegments) {
const float chisqMax = 100.;
const int nhitsMin = 5;
const int maxNSegments = 3;
// initialize
bool DTOverlapCandidate = false;
int cntMEP13[36];
int cntMEN13[36];
int cntMEP22[36];
int cntMEN22[36];
int cntMEP32[36];
int cntMEN32[36];
for (int i = 0; i < 36; ++i) {
cntMEP13[i] = 0;
cntMEN13[i] = 0;
cntMEP22[i] = 0;
cntMEN22[i] = 0;
cntMEP32[i] = 0;
cntMEN32[i] = 0;
}
// -----------------------
// loop over segments
// -----------------------
int nSegments = cscSegments->size();
if (nSegments < 2)
return DTOverlapCandidate;
for (CSCSegmentCollection::const_iterator it = cscSegments->begin(); it != cscSegments->end(); it++) {
// which chamber?
CSCDetId id = (CSCDetId)(*it).cscDetId();
int kEndcap = id.endcap();
int kStation = id.station();
int kRing = id.ring();
int kChamber = id.chamber();
// segment information
float chisq = (*it).chi2();
int nhits = (*it).nRecHits();
bool goodSegment = (chisq < chisqMax) && (nhits >= nhitsMin);
if (goodSegment) {
if ((kStation == 1) && (kRing == 3)) {
if (kEndcap == 1) {
cntMEP13[kChamber - 1]++;
}
if (kEndcap == 2) {
cntMEN13[kChamber - 1]++;
}
}
if ((kStation == 2) && (kRing == 2)) {
if (kEndcap == 1) {
cntMEP22[kChamber - 1]++;
}
if (kEndcap == 2) {
cntMEN22[kChamber - 1]++;
}
}
if ((kStation == 3) && (kRing == 2)) {
if (kEndcap == 1) {
cntMEP32[kChamber - 1]++;
}
if (kEndcap == 2) {
cntMEN32[kChamber - 1]++;
}
}
} // this is a good segment
} // end loop over segments
// ---------------------------------------------
// veto messy events
// ---------------------------------------------
bool tooManySegments = false;
for (int i = 0; i < 36; ++i) {
if ((cntMEP13[i] > maxNSegments) || (cntMEN13[i] > maxNSegments) || (cntMEP22[i] > maxNSegments) ||
(cntMEN22[i] > maxNSegments) || (cntMEP32[i] > maxNSegments) || (cntMEN32[i] > maxNSegments))
tooManySegments = true;
}
if (tooManySegments) {
return DTOverlapCandidate;
}
// ---------------------------------------------
// check for relevant matchup of segments
// ---------------------------------------------
bool matchup = false;
for (int i = 0; i < 36; ++i) {
if ((cntMEP13[i] > 0) && (cntMEP22[i] + cntMEP32[i] > 0)) {
matchup = true;
}
if ((cntMEN13[i] > 0) && (cntMEN22[i] + cntMEN32[i] > 0)) {
matchup = true;
}
}
/*
if (matchup) {
std::cout << "\tYYY looks like a good event. Select!\n";
std::cout << "-- pos endcap --\n"
<< "ME1/3: ";
for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP13[k];}
std::cout << "\nME2/2: ";
for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP22[k];}
std::cout << "\nME3/2: ";
for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP32[k];}
std::cout << std::endl;
}
*/
// set the selection flag
DTOverlapCandidate = matchup;
return DTOverlapCandidate;
}
//============================================================
//
// Select events which register in the inner parts of
// stations 1, 2, 3 and 4.
//
//============================================================
bool CSCSkim::doHaloLike(Handle<CSCSegmentCollection> cscSegments) {
const float chisqMax = 100.;
const int nhitsMin = 5; // on a segment
const int maxNSegments = 3; // in a chamber
// initialize
bool HaloLike = false;
int cntMEP11[36];
int cntMEN11[36];
int cntMEP12[36];
int cntMEN12[36];
int cntMEP21[36];
int cntMEN21[36];
int cntMEP31[36];
int cntMEN31[36];
int cntMEP41[36];
int cntMEN41[36];
for (int i = 0; i < 36; ++i) {
cntMEP11[i] = 0;
cntMEN11[i] = 0;
cntMEP12[i] = 0;
cntMEN12[i] = 0;
cntMEP21[i] = 0;
cntMEN21[i] = 0;
cntMEP31[i] = 0;
cntMEN31[i] = 0;
cntMEP41[i] = 0;
cntMEN41[i] = 0;
}
// -----------------------
// loop over segments
// -----------------------
int nSegments = cscSegments->size();
if (nSegments < 4)
return HaloLike;
for (CSCSegmentCollection::const_iterator it = cscSegments->begin(); it != cscSegments->end(); it++) {
// which chamber?
CSCDetId id = (CSCDetId)(*it).cscDetId();
int kEndcap = id.endcap();
int kStation = id.station();
int kRing = id.ring();
int kChamber = id.chamber();
// segment information
float chisq = (*it).chi2();
int nhits = (*it).nRecHits();
bool goodSegment = (chisq < chisqMax) && (nhits >= nhitsMin);
if (goodSegment) {
if ((kStation == 1) && (kRing == 1)) {
if (kEndcap == 1) {
cntMEP11[kChamber - 1]++;
}
if (kEndcap == 2) {
cntMEN11[kChamber - 1]++;
}
}
if ((kStation == 1) && (kRing == 2)) {
if (kEndcap == 1) {
cntMEP12[kChamber - 1]++;
}
if (kEndcap == 2) {
cntMEN12[kChamber - 1]++;
}
}
if ((kStation == 2) && (kRing == 1)) {
if (kEndcap == 1) {
cntMEP21[kChamber - 1]++;
}
if (kEndcap == 2) {
cntMEN21[kChamber - 1]++;
}
}
if ((kStation == 3) && (kRing == 1)) {
if (kEndcap == 1) {
cntMEP31[kChamber - 1]++;
}
if (kEndcap == 2) {
cntMEN31[kChamber - 1]++;
}
}
if ((kStation == 4) && (kRing == 1)) {
if (kEndcap == 1) {
cntMEP41[kChamber - 1]++;
}
if (kEndcap == 2) {
cntMEN41[kChamber - 1]++;
}
}
} // this is a good segment
} // end loop over segments
// ---------------------------------------------
// veto messy events
// ---------------------------------------------
bool tooManySegments = false;
for (int i = 0; i < 36; ++i) {
if ((cntMEP11[i] > 3 * maxNSegments) || (cntMEN11[i] > 3 * maxNSegments) || (cntMEP12[i] > maxNSegments) ||
(cntMEN12[i] > maxNSegments) || (cntMEP21[i] > maxNSegments) || (cntMEN21[i] > maxNSegments) ||
(cntMEP31[i] > maxNSegments) || (cntMEN31[i] > maxNSegments) || (cntMEP41[i] > maxNSegments) ||
(cntMEN41[i] > maxNSegments))
tooManySegments = true;
}
if (tooManySegments) {
return HaloLike;
}
// ---------------------------------------------
// check for relevant matchup of segments
// ---------------------------------------------
bool matchup = false;
for (int i = 0; i < 36; ++i) {
if ((cntMEP11[i] + cntMEP12[i] > 0) && (cntMEP21[i] > 0) && (cntMEP31[i] > 0) && (cntMEP41[i] > 0)) {
matchup = true;
}
if ((cntMEN11[i] + cntMEN12[i] > 0) && (cntMEN21[i] > 0) && (cntMEN31[i] > 0) && (cntMEN41[i] > 0)) {
matchup = true;
}
}
/*
if (matchup) {
std::cout << "\tYYY looks like a good event. Select!\n";
std::cout << "-- pos endcap --\n"
<< "ME1/1: ";
for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP11[k];}
std::cout << "\nME1/2: ";
for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP12[k];}
std::cout << "\nME2/1: ";
for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP21[k];}
std::cout << "\nME3/1: ";
for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP31[k];}
std::cout << "\nME4/1: ";
for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEP41[k];}
std::cout << std::endl;
std::cout << "-- neg endcap --\n"
<< "ME1/1: ";
for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEN11[k];}
std::cout << "\nME1/2: ";
for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEN12[k];}
std::cout << "\nME2/1: ";
for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEN21[k];}
std::cout << "\nME3/1: ";
for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEN31[k];}
std::cout << "\nME4/1: ";
for (int k=0; k<36; ++k) {std::cout << " " << setw(3) << cntMEN41[k];}
std::cout << std::endl;
std::cout << "\tn Analyzed = " << nEventsAnalyzed << "\tn Halo-like = " << nEventsHaloLike << std::endl;
}
*/
// set the selection flag
HaloLike = matchup;
return HaloLike;
}
//--------------------------------------------------------------
// select events with at least one "long" stand-alone muon
//--------------------------------------------------------------
bool CSCSkim::doLongSATrack(edm::Handle<reco::TrackCollection> saMuons) {
const float zDistanceMax = 2500.;
const float zDistanceMin = 700.;
const int nCSCHitsMin = 25;
const int nCSCHitsMax = 50;
const float zInnerMax = 80000.;
const int nNiceMuonsMin = 1;
//
// Loop through the track collection and test each one
//
int nNiceMuons = 0;
for (reco::TrackCollection::const_iterator muon = saMuons->begin(); muon != saMuons->end(); ++muon) {
// basic information
math::XYZVector innerMo = muon->innerMomentum();
GlobalVector im(innerMo.x(), innerMo.y(), innerMo.z());
math::XYZPoint innerPo = muon->innerPosition();
GlobalPoint ip(innerPo.x(), innerPo.y(), innerPo.z());
math::XYZPoint outerPo = muon->outerPosition();
GlobalPoint op(outerPo.x(), outerPo.y(), outerPo.z());
float zInner = ip.z();
float zOuter = op.z();
float zDistance = fabs(zOuter - zInner);
// loop over hits
int nCSCHits = 0;
for (trackingRecHit_iterator hit = muon->recHitsBegin(); hit != muon->recHitsEnd(); ++hit) {
const DetId detId((*hit)->geographicalId());
if (detId.det() == DetId::Muon) {
if (detId.subdetId() == MuonSubdetId::CSC) {
//CSCDetId cscId(detId.rawId());
//int chamberId = cscId.chamber();
nCSCHits++;
}
}
}
// is this a nice muon?
if ((zDistance < zDistanceMax) && (zDistance > zDistanceMin) && (nCSCHits > nCSCHitsMin) &&
(nCSCHits < nCSCHitsMax) && (min(fabs(zInner), fabs(zOuter)) < zInnerMax) &&
(fabs(innerMo.z()) > 0.000000001)) {
nNiceMuons++;
}
}
bool select = (nNiceMuons >= nNiceMuonsMin);
return select;
}
//============================================================
//
// Select events which are good for B-field studies.
//
// These events have a good track in the tracker.
//
// D.Dibur and M.Schmitt
//============================================================
bool CSCSkim::doBFieldStudySelection(edm::Handle<reco::TrackCollection> saMuons,
edm::Handle<reco::TrackCollection> tracks,
edm::Handle<reco::MuonCollection> gMuons) {
bool acceptThisEvent = false;
//-----------------------------------
// examine the stand-alone tracks
//-----------------------------------
int nGoodSAMuons = 0;
for (reco::TrackCollection::const_iterator muon = saMuons->begin(); muon != saMuons->end(); ++muon) {
float preco = muon->p();
math::XYZPoint innerPo = muon->innerPosition();
GlobalPoint iPnt(innerPo.x(), innerPo.y(), innerPo.z());
math::XYZPoint outerPo = muon->outerPosition();
GlobalPoint oPnt(outerPo.x(), outerPo.y(), outerPo.z());
float zLength = abs(iPnt.z() - oPnt.z());
math::XYZVector innerMom = muon->innerMomentum();
GlobalVector iP(innerMom.x(), innerMom.y(), innerMom.z());
math::XYZVector outerMom = muon->outerMomentum();
GlobalVector oP(outerMom.x(), outerMom.y(), outerMom.z());
const float zRef = 300.;
float xExt = 10000.;
float yExt = 10000.;
if (abs(oPnt.z()) < abs(iPnt.z())) {
float deltaZ = 0.;
if (oPnt.z() > 0) {
deltaZ = zRef - oPnt.z();
} else {
deltaZ = -zRef - oPnt.z();
}
xExt = oPnt.x() + deltaZ * oP.x() / oP.z();
yExt = oPnt.y() + deltaZ * oP.y() / oP.z();
} else {
float deltaZ = 0.;
if (iPnt.z() > 0) {
deltaZ = zRef - iPnt.z();
} else {
deltaZ = -zRef - iPnt.z();
}
xExt = iPnt.x() + deltaZ * iP.x() / iP.z();
yExt = iPnt.y() + deltaZ * iP.y() / iP.z();
}
float rExt = sqrt(xExt * xExt + yExt * yExt);
int nCSCHits = 0;
for (trackingRecHit_iterator hit = muon->recHitsBegin(); hit != muon->recHitsEnd(); ++hit) {
const DetId detId((*hit)->geographicalId());
if (detId.det() == DetId::Muon) {
if (detId.subdetId() == MuonSubdetId::CSC) {
nCSCHits++;
}
}
} // end loop over hits
float zInner = -1.;
if (nCSCHits >= nCSCHitsMin) {
if (abs(iPnt.z()) < abs(iPnt.z())) {
zInner = iPnt.z();
} else {
zInner = oPnt.z();
}
}
bool goodSAMuon = (preco > pMin) && (zLength > zLengthMin) && (nCSCHits >= nCSCHitsMin) && (zInner < zInnerMax) &&
(rExt < rExtMax);
if (goodSAMuon) {
nGoodSAMuons++;
}
} // end loop over stand-alone muon collection
//-----------------------------------
// examine the tracker tracks
//-----------------------------------
int nGoodTracks = 0;
for (reco::TrackCollection::const_iterator track = tracks->begin(); track != tracks->end(); ++track) {
float preco = track->p();
int n = track->recHitsSize();
math::XYZPoint innerPo = track->innerPosition();
GlobalPoint iPnt(innerPo.x(), innerPo.y(), innerPo.z());
math::XYZPoint outerPo = track->outerPosition();
GlobalPoint oPnt(outerPo.x(), outerPo.y(), outerPo.z());
float zLength = abs(iPnt.z() - oPnt.z());
math::XYZVector innerMom = track->innerMomentum();
GlobalVector iP(innerMom.x(), innerMom.y(), innerMom.z());
math::XYZVector outerMom = track->outerMomentum();
GlobalVector oP(outerMom.x(), outerMom.y(), outerMom.z());
const float zRef = 300.;
float xExt = 10000.;
float yExt = 10000.;
if (abs(oPnt.z()) > abs(iPnt.z())) {
float deltaZ = 0.;
if (oPnt.z() > 0) {
deltaZ = zRef - oPnt.z();
} else {
deltaZ = -zRef - oPnt.z();
}
xExt = oPnt.x() + deltaZ * oP.x() / oP.z();
yExt = oPnt.y() + deltaZ * oP.y() / oP.z();
} else {
float deltaZ = 0.;
if (iPnt.z() > 0) {
deltaZ = zRef - iPnt.z();
} else {
deltaZ = -zRef - iPnt.z();
}
xExt = iPnt.x() + deltaZ * iP.x() / iP.z();
yExt = iPnt.y() + deltaZ * iP.y() / iP.z();
}
float rExt = sqrt(xExt * xExt + yExt * yExt);
bool goodTrack = (preco > pMin) && (n >= nTrHitsMin) && (zLength > zLengthTrMin) && (rExt < rExtMax);
if (goodTrack) {
nGoodTracks++;
}
} // end loop over tracker tracks
//-----------------------------------
// examine the global muons
//-----------------------------------
int nGoodGlobalMuons = 0;
for (reco::MuonCollection::const_iterator global = gMuons->begin(); global != gMuons->end(); ++global) {
if (global->isGlobalMuon()) {
float pDef = global->p();
float redChiSq = global->globalTrack()->normalizedChi2();
const reco::HitPattern& hp = (global->globalTrack())->hitPattern();
// int nTotalHits = hp.numberOfHits();
// int nValidHits = hp.numberOfValidHits();
int nTrackerHits = hp.numberOfValidTrackerHits();
// int nPixelHits = hp.numberOfValidPixelHits();
// int nStripHits = hp.numberOfValidStripHits();
int nCSCHits = 0;
for (trackingRecHit_iterator hit = (global->globalTrack())->recHitsBegin();
hit != (global->globalTrack())->recHitsEnd();
++hit) {
const DetId detId((*hit)->geographicalId());
if (detId.det() == DetId::Muon) {
if (detId.subdetId() == MuonSubdetId::CSC) {
nCSCHits++;
}
}
} // end loop over hits
bool goodGlobalMuon =
(pDef > pMin) && (nTrackerHits >= nValidHitsMin) && (nCSCHits >= nCSCHitsMin) && (redChiSq < redChiSqMax);
if (goodGlobalMuon) {
nGoodGlobalMuons++;
}
} // this is a global muon
} // end loop over stand-alone muon collection
//-----------------------------------
// do we accept this event?
//-----------------------------------
acceptThisEvent = ((nGoodSAMuons > 0) && (nGoodTracks > 0)) || (nGoodGlobalMuons > 0);
return acceptThisEvent;
}
//--------------------------------------------------------------
// Compute a serial number for the chamber.
// This is useful when filling histograms and working with arrays.
//--------------------------------------------------------------
int CSCSkim::chamberSerial(int kEndcap, int kStation, int kRing, int kChamber) {
int kSerial = kChamber;
if (kStation == 1 && kRing == 1) {
kSerial = kChamber;
}
if (kStation == 1 && kRing == 2) {
kSerial = kChamber + 36;
}
if (kStation == 1 && kRing == 3) {
kSerial = kChamber + 72;
}
if (kStation == 1 && kRing == 4) {
kSerial = kChamber;
}
if (kStation == 2 && kRing == 1) {
kSerial = kChamber + 108;
}
if (kStation == 2 && kRing == 2) {
kSerial = kChamber + 126;
}
if (kStation == 3 && kRing == 1) {
kSerial = kChamber + 162;
}
if (kStation == 3 && kRing == 2) {
kSerial = kChamber + 180;
}
if (kStation == 4 && kRing == 1) {
kSerial = kChamber + 216;
}
if (kStation == 4 && kRing == 2) {
kSerial = kChamber + 234;
} // one day...
if (kEndcap == 2) {
kSerial = kSerial + 300;
}
return kSerial;
}
//define this as a plug-in
DEFINE_FWK_MODULE(CSCSkim);
|