Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
/*
 * =====================================================================================
 *
 *       Filename:  Detector.cc
 *
 *    Description:  Class Detector implementation
 *
 *        Version:  1.0
 *        Created:  05/19/2008 10:59:34 AM
 *       Revision:  none
 *       Compiler:  gcc
 *
 *         Author:  Valdas Rapsevicius (VR), Valdas.Rapsevicius@cern.ch
 *        Company:  CERN, CH
 *
 * =====================================================================================
 */

#ifdef CSC_RENDER_PLUGIN
#include "CSCDQM_Detector.h"
#else
#include "CSCDQM_Detector.h"
#endif

namespace cscdqm {

  /**
   * @brief  Constructor
   * @param  p_partition_x Number of efficiency partitions on X axis
   * @param  p_partition_y Number of efficiency partitions on Y axis
   * @return 
   */
  Detector::Detector(const unsigned int p_partitions_x, const unsigned int p_partitions_y) {
    partitions_x = p_partitions_x;
    partitions_y = p_partitions_y;

    unsigned int i = 0;
    Address adr;

    adr.mask.layer = false;
    adr.mask.side = adr.mask.station = adr.mask.ring = adr.mask.chamber = adr.mask.cfeb = adr.mask.hv = true;

    /**  Creating real eta/phi boxes for available addresses */
    for (adr.side = 1; adr.side <= N_SIDES; adr.side++) {
      float sign = +1.0;
      if (adr.side == 2)
        sign = -1.0;
      for (adr.station = 1; adr.station <= N_STATIONS; adr.station++) {
        for (adr.ring = 1; adr.ring <= NumberOfRings(adr.station); adr.ring++) {
          for (adr.chamber = 1; adr.chamber <= NumberOfChambers(adr.station, adr.ring); adr.chamber++) {
            for (adr.cfeb = 1; adr.cfeb <= NumberOfChamberCFEBs(adr.station, adr.ring); adr.cfeb++) {
              for (adr.hv = 1; adr.hv <= NumberOfChamberHVs(adr.station, adr.ring); adr.hv++) {
                float z = Z(adr.station, adr.ring);
                float r_min = RMinHV(adr.station, adr.ring, adr.hv);
                float r_max = RMaxHV(adr.station, adr.ring, adr.hv);
                float eta_min = sign * Eta(r_min, z);
                float eta_max = sign * Eta(r_max, z);
                float x_min = EtaToX(eta_min);
                float x_max = EtaToX(eta_max);
                float phi_min = 0;
                float phi_max = 0;

                if (adr.station == 1 && adr.ring == 1 && adr.hv == 1) {
                  phi_min = PhiMinCFEB(adr.station, adr.ring, adr.chamber, 1);
                  phi_max = PhiMaxCFEB(adr.station, adr.ring, adr.chamber, NumberOfChamberCFEBs(adr.station, adr.ring));
                } else {
                  phi_min = PhiMinCFEB(adr.station, adr.ring, adr.chamber, adr.cfeb);
                  phi_max = PhiMaxCFEB(adr.station, adr.ring, adr.chamber, adr.cfeb);
                }

                float y_min = PhiToY(phi_min);
                float y_max = PhiToY(phi_max);

                boxes[i].adr = adr;

                float xboxmin = (x_min < x_max ? x_min : x_max);
                float xboxmax = (x_max > x_min ? x_max : x_min);
                float yboxmin = (y_min < y_max ? y_min : y_max);
                float yboxmax = (y_max > y_min ? y_max : y_min);

                boxes[i].xmin = xboxmin;
                boxes[i].xmax = xboxmax;
                boxes[i].ymin = yboxmin;
                boxes[i].ymax = yboxmax;

                /** Address box calculated successfully. Now lets cache its
                 * partition elements for performace. */

                unsigned int x1 = int(floor(xboxmin / PARTITION_STEP_X)) + int(partitions_x / 2);
                unsigned int x2 = int(ceil(xboxmax / PARTITION_STEP_X)) + int(partitions_x / 2);
                unsigned int y1 = int(floor(yboxmin / PARTITION_STEP_Y));
                unsigned int y2 = int(ceil(yboxmax / PARTITION_STEP_Y));

                for (unsigned int x = x1; x < x2; x++) {
                  for (unsigned int y = y1; y < y2; y++) {
                    unsigned int index = PARTITION_INDEX(x, y);
                    PartitionMapIterator iter = partitions.find(index);
                    if (iter == partitions.end()) {
                      std::vector<unsigned int> v;
                      partitions.insert(std::make_pair(index, v));
                    }
                    partitions[index].push_back(i);
                  }
                }

                i++;
              }
            }
          }
        }
      }
    }

    /**  Cached the most frequently used areas */
    adr.mask.side = adr.mask.ring = adr.mask.chamber = adr.mask.layer = adr.mask.cfeb = adr.mask.hv = false;
    adr.mask.station = true;
    adr.station = 1;
    station_area[0] = Area(adr);
    adr.station = 2;
    station_area[1] = Area(adr);
    adr.station = 3;
    station_area[2] = Area(adr);
    adr.station = 4;
    station_area[3] = Area(adr);
  }

  /**
   * @brief  Calculate station area in eta/phi space
   * @param  station Station number
   * @return Area that is being covered by station
   */
  const float Detector::Area(const unsigned int station) const {
    if (station > 0 && station <= N_STATIONS) {
      return station_area[station - 1];
    }
    return 0;
  }

  /**
   * @brief  Return global chamber index on his geometric location
   * @param  side Side (1,2)
   * @param  station Station
   * @param  ring Ring\
   * @param  chamber Chamber position
   * @return Global chamber index starting 1. If chamber is not existing - returns 0
   */
  unsigned int Detector::GlobalChamberIndex(unsigned int side,
                                            unsigned int station,
                                            unsigned int ring,
                                            unsigned int chamber) const {
    Address adr, iadr;
    adr.mask.side = adr.mask.station = adr.mask.ring = adr.mask.chamber = true;
    adr.mask.layer = adr.mask.cfeb = adr.mask.hv = false;
    adr.layer = adr.cfeb = adr.hv = 0;
    adr.side = side;
    adr.station = station;
    adr.ring = ring;
    adr.chamber = chamber;
    iadr = adr;

    unsigned int i = 1;
    for (iadr.side = 1; iadr.side <= N_SIDES; iadr.side++) {
      for (iadr.station = 1; iadr.station <= N_STATIONS; iadr.station++) {
        for (iadr.ring = 1; iadr.ring <= NumberOfRings(iadr.station); iadr.ring++) {
          for (iadr.chamber = 1; iadr.chamber <= NumberOfChambers(iadr.station, iadr.ring); iadr.chamber++) {
            if (iadr == adr) {
              return i;
            }
            i += 1;
          }
        }
      }
    }
    return 0;
  }

  /**
   * @brief  Calculate address area in eta/phi space
   * @param  adr Address
   * @return Area that is being covered by address
   */
  const float Detector::Area(const Address& adr) const {
    float a = 0;
    for (unsigned int i = 0; i < N_ELEMENTS; i++) {
      if (boxes[i].adr == adr) {
        a += fabs((boxes[i].xmax - boxes[i].xmin) * (boxes[i].ymax - boxes[i].ymin));
      }
    }
    return a;
  }

  /**
   * @brief  Returns the number of rings for the given station
   * @param  station Station number (1, 2, 3, 4)
   * @return number of rings for the given station
   */
  const unsigned int Detector::NumberOfRings(const unsigned int station) const {
    if (station == 1)
      return 3;
    if (station == 2)
      return 2;
    if (station == 3)
      return 2;
    if (station == 4)
      return 2;
    return 0;
  }

  /**
   * @brief  Returns the number of chambers for the given station and ring
   * @param  station Station number (1...4)
   * @param  ring Ring number (1...3)
   * @return number of chambers
   */
  const unsigned int Detector::NumberOfChambers(const unsigned int station, const unsigned int ring) const {
    if (station == 1 && ring == 1)
      return 36;
    if (station == 1 && ring == 2)
      return 36;
    if (station == 1 && ring == 3)
      return 36;
    if (station == 2 && ring == 1)
      return 18;
    if (station == 2 && ring == 2)
      return 36;
    if (station == 3 && ring == 1)
      return 18;
    if (station == 3 && ring == 2)
      return 36;
    if (station == 4 && ring == 1)
      return 18;
    if (station == 4 && ring == 2)
      return 36;
    return 0;
  }

  /**
   * @brief  Returns the number of CFEBs per Chamber on given Station/Ring
   * @param  station Station number (1...4)
   * @param  ring Ring number (1...3)
   * @return Number of CFEBs per Chamber
   */
  const unsigned int Detector::NumberOfChamberCFEBs(const unsigned int station, const unsigned int ring) const {
    if (station == 1 && ring == 1)
      return 4;
    if (station == 1 && ring == 2)
      return 5;
    if (station == 1 && ring == 3)
      return 4;
    if (station == 2 && ring == 1)
      return 5;
    if (station == 2 && ring == 2)
      return 5;
    if (station == 3 && ring == 1)
      return 5;
    if (station == 3 && ring == 2)
      return 5;
    if (station == 4 && ring == 1)
      return 5;
    if (station == 4 && ring == 2)
      return 5;
    return 0;
  }

  /**
   * @brief   Returns the number of HVs per Chamber on given Station/Ring
   * @param  station Station number (1...4)
   * @param  ring Ring number (1...3)
   * @return Number of HVs per Chamber
   */
  const unsigned int Detector::NumberOfChamberHVs(const unsigned int station, const unsigned int ring) const {
    if (station == 1 && ring == 1)
      return 2;
    if (station == 1 && ring == 2)
      return 3;
    if (station == 1 && ring == 3)
      return 3;
    if (station == 2 && ring == 1)
      return 3;
    if (station == 2 && ring == 2)
      return 5;
    if (station == 3 && ring == 1)
      return 3;
    if (station == 3 && ring == 2)
      return 5;
    if (station == 4 && ring == 1)
      return 3;
    if (station == 4 && ring == 2)
      return 5;
    return 0;
  }

  /**
   * @brief  Prints address for debugging
   * @param  adr Address to print
   * @return 
   */
  void Detector::PrintAddress(const Address& adr) const {
    std::cout << "Side (" << std::boolalpha << adr.mask.side << ")";
    if (adr.mask.side)
      std::cout << " = " << adr.side;

    std::cout << ", Station (" << std::boolalpha << adr.mask.station << ")";
    if (adr.mask.station)
      std::cout << " = " << adr.station;

    std::cout << ", Ring (" << std::boolalpha << adr.mask.ring << ")";
    if (adr.mask.ring)
      std::cout << " = " << adr.ring;

    std::cout << ", Chamber (" << std::boolalpha << adr.mask.chamber << ")";
    if (adr.mask.chamber)
      std::cout << " = " << adr.chamber;

    std::cout << ", Layer (" << std::boolalpha << adr.mask.layer << ")";
    if (adr.mask.layer)
      std::cout << " = " << adr.layer;

    std::cout << ", CFEB (" << std::boolalpha << adr.mask.cfeb << ")";
    if (adr.mask.cfeb)
      std::cout << " = " << adr.cfeb;

    std::cout << ", HV (" << std::boolalpha << adr.mask.hv << ")";
    if (adr.mask.hv)
      std::cout << " = " << adr.hv;

    std::cout << std::endl;
  }

  /**
   * @brief  Address iterator by mask
   * @param  i Iterator
   * @param  adr Address to return
   * @param  mask for addresses
   * @return true if address was found and filled in, false - otherwise 
   */
  const bool Detector::NextAddress(unsigned int& i, const Address*& adr, const Address& mask) const {
    for (; i < N_ELEMENTS; i++) {
      if (boxes[i].adr == mask) {
        adr = &boxes[i].adr;
        i++;
        return true;
      }
    }
    return false;
  }

  /**
   * @brief  Address box iterator by mask
   * @param  i Iterator
   * @param  adr AddressBox to return
   * @param  mask for addresses
   * @return true if address box was found and filled in, false - otherwise 
   */
  const bool Detector::NextAddressBox(unsigned int& i, const AddressBox*& box, const Address& mask) const {
    for (; i < N_ELEMENTS; i++) {
      if (boxes[i].adr == mask) {
        box = &boxes[i];
        i++;
        return true;
      }
    }
    return false;
  }

  /**
   * @brief  Address box iterator by partition
   * @param  i Iterator
   * @param  px Partition x index
   * @param  py Partition y index
   * @param  box AddressBox to return
   * @return true if address box was found and filled in, false - otherwise 
   */
  const bool Detector::NextAddressBoxByPartition(unsigned int& i,
                                                 const unsigned int px,
                                                 const unsigned int py,
                                                 AddressBox*& box) {
    unsigned int index = PARTITION_INDEX(px, py);

    PartitionMapIterator iter = partitions.find(index);
    if (iter != partitions.end()) {
      if (i < partitions[index].size()) {
        box = &boxes[partitions[index].at(i)];
        i++;
        return true;
      }
    }
    return false;
  }

  const float Detector::Eta(const float r, const float z) const {
    if (r > 0.0 || z > 0.0) {
      float sin_theta = r / sqrt(r * r + z * z);
      float cos_theta = z / sqrt(r * r + z * z);
      return -log(sin_theta / (cos_theta + 1));
    }
    if (r == 0.0)
      return FLT_MAX;
    return 0.0;
  }

  /**
   * @brief   Transform eta coordinate to local canvas coordinate
   * @param  eta Eta coordinate
   * @return local canvas coordinate
   */
  const float Detector::EtaToX(const float eta) const {
    float x_min = -2.5;
    float x_max = 2.5;
    float eta_min = -2.5;
    float eta_max = 2.5;
    float a = (x_max - x_min) / (eta_max - eta_min);
    float b = (eta_max * x_min - eta_min * x_max) / (eta_max - eta_min);
    return a * eta + b;
  }

  /**
   * @brief   Transform phi coordinate to local canvas coordinate
   * @param  phi Phi coordinate
   * @return local canvas coordinate
   */
  const float Detector::PhiToY(const float phi) const {
    float y_min = 0.0;
    float y_max = 2.0 * 3.14159;
    float phi_min = 0.0;
    float phi_max = 2.0 * 3.14159;
    float a = (y_max - y_min) / (phi_max - phi_min);
    float b = (phi_max * y_min - phi_min * y_max) / (phi_max - phi_min);
    return a * phi + b;
  }

  /**
   * @brief  Get Z parameter (used in address eta/phi calculation)
   * @param  station Station Id
   * @param  ring Ring Id
   * @return Z value
   */
  const float Detector::Z(const int station, const int ring) const {
    float z_csc = 0;

    if (station == 1 && ring == 1)
      z_csc = (5834.5 + 6101.5) / 2.0;
    if (station == 1 && ring == 2)
      z_csc = (6790.0 + 7064.3) / 2.0;
    if (station == 1 && ring == 3)
      z_csc = 6888.0;
    if (station == 2)
      z_csc = (8098.0 + 8346.0) / 2.0;
    if (station == 3)
      z_csc = (9414.8 + 9166.8) / 2.0;
    if (station == 4)
      z_csc = 10630.0;  // has to be corrected

    return z_csc;
  }

  /**
   * @brief  Get R min parameter (used in address eta/phi calculation)
   * @param  station Station Id
   * @param  ring Ring Id
   * @param  n_hv HV number
   * @return R min value
   */
  const float Detector::RMinHV(const int station, const int ring, const int n_hv) const {
    float r_min_hv = 0;

    if (station == 1 && ring == 1) {
      if (n_hv == 1)
        r_min_hv = 1060.0;
      if (n_hv == 2)
        r_min_hv = 1500.0;
    }

    if (station == 1 && ring == 2) {
      if (n_hv == 1)
        r_min_hv = 2815.0;
      if (n_hv == 2)
        r_min_hv = 3368.2;
      if (n_hv == 3)
        r_min_hv = 4025.7;
    }

    if (station == 1 && ring == 3) {
      if (n_hv == 1)
        r_min_hv = 5120.0;
      if (n_hv == 2)
        r_min_hv = 5724.1;
      if (n_hv == 3)
        r_min_hv = 6230.2;
    }

    if (station == 2 && ring == 1) {
      if (n_hv == 1)
        r_min_hv = 1469.2;
      if (n_hv == 2)
        r_min_hv = 2152.3;
      if (n_hv == 3)
        r_min_hv = 2763.7;
    }

    if (station == 3 && ring == 1) {
      if (n_hv == 1)
        r_min_hv = 1668.9;
      if (n_hv == 2)
        r_min_hv = 2164.9;
      if (n_hv == 3)
        r_min_hv = 2763.8;
    }

    if (station == 4 && ring == 1) {
      if (n_hv == 1)
        r_min_hv = 1876.1;
      if (n_hv == 2)
        r_min_hv = 2365.9;
      if (n_hv == 3)
        r_min_hv = 2865.0;
    }

    if ((station == 2 || station == 3 || station == 4) && ring == 2) {
      if (n_hv == 1)
        r_min_hv = 3640.2;
      if (n_hv == 2)
        r_min_hv = 4446.3;
      if (n_hv == 3)
        r_min_hv = 5053.2;
      if (n_hv == 4)
        r_min_hv = 5660.1;
      if (n_hv == 5)
        r_min_hv = 6267.0;
    }

    return r_min_hv;
  }

  /**
   * @brief  Get R max parameter (used in address eta/phi calculation)
   * @param  station Station Id
   * @param  ring Ring Id
   * @param  n_hv HV number
   * @return R max value
   */
  const float Detector::RMaxHV(const int station, const int ring, const int n_hv) const {
    float r_max_hv = 0;

    if (station == 1 && ring == 1) {
      if (n_hv == 1)
        r_max_hv = 1500.0;
      if (n_hv == 2)
        r_max_hv = 2565.0;
    }

    if (station == 1 && ring == 2) {
      if (n_hv == 1)
        r_max_hv = 3368.2;
      if (n_hv == 2)
        r_max_hv = 4025.7;
      if (n_hv == 3)
        r_max_hv = 4559.9;
    }

    if (station == 1 && ring == 3) {
      if (n_hv == 1)
        r_max_hv = 5724.1;
      if (n_hv == 2)
        r_max_hv = 6230.2;
      if (n_hv == 3)
        r_max_hv = 6761.5;
    }

    if (station == 2 && ring == 1) {
      if (n_hv == 1)
        r_max_hv = 2152.3;
      if (n_hv == 2)
        r_max_hv = 2763.7;
      if (n_hv == 3)
        r_max_hv = 3365.8;
    }

    if (station == 3 && ring == 1) {
      if (n_hv == 1)
        r_max_hv = 2164.9;
      if (n_hv == 2)
        r_max_hv = 2763.8;
      if (n_hv == 3)
        r_max_hv = 3365.8;
    }

    if (station == 4 && ring == 1) {
      if (n_hv == 1)
        r_max_hv = 2365.9;
      if (n_hv == 2)
        r_max_hv = 2865.0;
      if (n_hv == 3)
        r_max_hv = 3356.3;
    }

    if ((station == 2 || station == 3 || station == 4) && ring == 2) {
      if (n_hv == 1)
        r_max_hv = 4446.3;
      if (n_hv == 2)
        r_max_hv = 5053.2;
      if (n_hv == 3)
        r_max_hv = 5660.1;
      if (n_hv == 4)
        r_max_hv = 6267.0;
      if (n_hv == 5)
        r_max_hv = 6870.8;
    }

    return r_max_hv;
  }

  /**
   * @brief  Get Min phi boundary for particular CFEB
   * @param  station Station number
   * @param  ring Ring number
   * @param  chamber Chamber number
   * @param  cfeb CFEB number
   * @return Min phi CFEB boundary
   */
  const float Detector::PhiMinCFEB(const int station, const int ring, const int chamber, const int cfeb) const {
    float phi_min_cfeb;

    int n_cfeb = NumberOfChamberCFEBs(station, ring);
    int n_chambers = NumberOfChambers(station, ring);

    phi_min_cfeb =
        0.0 + 2.0 * 3.14159 / ((float)(n_chambers)) * ((float)(chamber - 1) + (float)(cfeb - 1) / (float)(n_cfeb));

    return phi_min_cfeb;
  }

  /**
   * @brief  Get Max phi boundary for particular CFEB
   * @param  station Station number
   * @param  ring Ring number
   * @param  chamber Chamber number
   * @param  cfeb CFEB number
   * @return Max phi CFEB boundary
   */
  const float Detector::PhiMaxCFEB(const int station, const int ring, const int chamber, const int cfeb) const {
    float phi_max_cfeb;

    int n_cfeb = NumberOfChamberCFEBs(station, ring);
    int n_chambers = NumberOfChambers(station, ring);

    phi_max_cfeb = 0.0 + 2.0 * 3.14159 / (float)n_chambers * ((float)(chamber - 1) + (float)(cfeb) / (float)n_cfeb);

    return phi_max_cfeb;
  }

  /**
   * @brief  Construct address from string
   * @param  str_address Address in string
   * @param  adr Address to return
   * @return true if address was successfully created, false - otherwise
   */
  const bool Detector::AddressFromString(const std::string& str_address, Address& adr) const {
    std::vector<std::string> tokens;
    Utility::splitString(str_address, ",", tokens);

    if (tokens.size() != ADDR_SIZE)
      return false;

    for (unsigned int r = 0; r < ADDR_SIZE; r++) {
      std::string token = tokens.at(r);
      Utility::trimString(token);
      bool mask = false;
      unsigned int num = 0;

      if (token != "*") {
        if (stringToNumber<unsigned int>(num, token, std::dec)) {
          mask = true;
        } else {
          return false;
        }
      }

      switch (r) {
        case 0:
          adr.mask.side = mask;
          adr.side = num;
          break;
        case 1:
          adr.mask.station = mask;
          adr.station = num;
          break;
        case 2:
          adr.mask.ring = mask;
          adr.ring = num;
          break;
        case 3:
          adr.mask.chamber = mask;
          adr.chamber = num;
          break;
        case 4:
          adr.mask.layer = mask;
          adr.layer = num;
          break;
        case 5:
          adr.mask.cfeb = mask;
          adr.cfeb = num;
          break;
        case 6:
          adr.mask.hv = mask;
          adr.hv = num;
      }
    }

    return true;
  }

}  // namespace cscdqm