Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

/*
 *  See header file for a description of this class.
 *
 *  \author G. Cerminara - INFN Torino
 */

#include "DTOccupancyCluster.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"

#include "TH2F.h"
#include "TMath.h"

#include <iostream>

using namespace std;
using namespace edm;

DTOccupancyCluster::DTOccupancyCluster(const DTOccupancyPoint& firstPoint, const DTOccupancyPoint& secondPoint)
    : radius(0), theMaxMean(-1.), theMaxRMS(-1.), theMeanSum(0.), theRMSSum(0.) {
  if (!qualityCriterion(firstPoint, secondPoint)) {
    theValidity = false;
  } else {
    // compute the cluster quantities
    thePoints.push_back(firstPoint);
    thePoints.push_back(secondPoint);
    if (firstPoint.mean() > secondPoint.mean())
      theMaxMean = firstPoint.mean();
    else
      theMaxMean = secondPoint.mean();

    if (firstPoint.rms() > secondPoint.rms())
      theMaxRMS = firstPoint.rms();
    else
      theMaxRMS = secondPoint.rms();
    theMeanSum += firstPoint.mean();
    theRMSSum += firstPoint.rms();

    theMeanSum += secondPoint.mean();
    theRMSSum += secondPoint.rms();

    computeRadius();
  }
}

DTOccupancyCluster::DTOccupancyCluster(const DTOccupancyPoint& singlePoint)
    : radius(0),
      theMaxMean(singlePoint.mean()),
      theMaxRMS(singlePoint.rms()),
      theMeanSum(singlePoint.mean()),
      theRMSSum(singlePoint.rms()) {
  theValidity = true;

  // compute the cluster quantities
  thePoints.push_back(singlePoint);
}

DTOccupancyCluster::~DTOccupancyCluster() {}

// Check if the cluster candidate satisfies the quality requirements
bool DTOccupancyCluster::isValid() const { return theValidity; }

// Add a point to the cluster: returns false if the point does not satisfy the
// quality requirement
bool DTOccupancyCluster::addPoint(const DTOccupancyPoint& anotherPoint) {
  LogTrace("DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyCluster")
      << "   Add a point to the cluster: mean: " << anotherPoint.mean() << " rms: " << anotherPoint.rms() << endl;
  if (qualityCriterion(anotherPoint)) {
    LogTrace("DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyCluster") << "   point is valid" << endl;
    thePoints.push_back(anotherPoint);
    // Compute the new cluster size
    computeRadius();
    // compute the max mean and RMS
    if (anotherPoint.mean() > theMaxMean) {
      theMaxMean = anotherPoint.mean();
    }
    if (anotherPoint.rms() > theMaxRMS) {
      theMaxRMS = anotherPoint.rms();
    }
    theMeanSum += anotherPoint.mean();
    theRMSSum += anotherPoint.rms();
    return true;
  }
  return false;
}

// Compute the distance of a single point from the cluster
// (minimum distance with respect to the cluster points)
double DTOccupancyCluster::distance(const DTOccupancyPoint& point) const {
  double dist = 99999999;
  // compute the minimum distance from a point
  for (vector<DTOccupancyPoint>::const_iterator pt = thePoints.begin(); pt != thePoints.end(); ++pt) {
    double distance = point.distance(*pt);
    if (distance < dist) {
      dist = distance;
    }
  }
  return dist;
}

double DTOccupancyCluster::averageMean() const { return theMeanSum / (double)thePoints.size(); }

double DTOccupancyCluster::averageRMS() const { return theRMSSum / (double)thePoints.size(); }

double DTOccupancyCluster::maxMean() const { return theMaxMean; }

double DTOccupancyCluster::maxRMS() const { return theMaxRMS; }

TH2F* DTOccupancyCluster::getHisto(std::string histoName,
                                   int nBinsX,
                                   double minX,
                                   double maxX,
                                   int nBinsY,
                                   double minY,
                                   double maxY,
                                   int fillColor) const {
  TH2F* histo = new TH2F(histoName.c_str(), histoName.c_str(), nBinsX, minX, maxX, nBinsY, minY, maxY);
  histo->SetFillColor(fillColor);
  for (vector<DTOccupancyPoint>::const_iterator pt = thePoints.begin(); pt != thePoints.end(); ++pt) {
    histo->Fill((*pt).mean(), (*pt).rms());
  }
  return histo;
}

bool DTOccupancyCluster::qualityCriterion(const DTOccupancyPoint& firstPoint, const DTOccupancyPoint& secondPoint) {
  if (firstPoint.deltaMean(secondPoint) < computeAverageRMS(firstPoint, secondPoint) &&
      firstPoint.deltaRMS(secondPoint) < computeMinRMS(firstPoint, secondPoint)) {
    theValidity = true;

    return true;
  }

  theValidity = false;
  return false;
}

bool DTOccupancyCluster::qualityCriterion(const DTOccupancyPoint& anotherPoint) {
  double minrms = 0;
  if (anotherPoint.rms() < averageRMS())
    minrms = anotherPoint.rms();
  else
    minrms = averageRMS();

  if (fabs(averageMean() - anotherPoint.mean()) < averageRMS() &&
      fabs(averageRMS() - anotherPoint.rms()) < 2 * minrms / 3.) {
    theValidity = true;
    return true;
  }
  theValidity = false;
  return false;
}

void DTOccupancyCluster::computeRadius() {
  double radius_squared = 0;
  for (vector<DTOccupancyPoint>::const_iterator pt_i = thePoints.begin(); pt_i != thePoints.end(); ++pt_i) {
    for (vector<DTOccupancyPoint>::const_iterator pt_j = thePoints.begin(); pt_j != thePoints.end(); ++pt_j) {
      radius_squared += TMath::Power(pt_i->distance(*pt_j), 2);
    }
  }
  radius_squared = radius_squared / (2 * TMath::Power(thePoints.size() + 1, 2));
  radius = sqrt(radius_squared);
}

int DTOccupancyCluster::nPoints() const { return thePoints.size(); }

set<DTLayerId> DTOccupancyCluster::getLayerIDs() const {
  set<DTLayerId> ret;
  for (vector<DTOccupancyPoint>::const_iterator point = thePoints.begin(); point != thePoints.end(); ++point) {
    ret.insert((*point).layerId());
  }
  return ret;
}

bool clusterIsLessThan(const DTOccupancyCluster& clusterOne, const DTOccupancyCluster& clusterTwo) {
  if (clusterTwo.nPoints() == 1 && clusterOne.nPoints() != 1) {
    return true;
  }
  if (clusterTwo.nPoints() != 1 && clusterOne.nPoints() == 1) {
    return false;
  }

  if (clusterOne.nPoints() > clusterTwo.nPoints()) {
    return true;
  } else if (clusterOne.nPoints() < clusterTwo.nPoints()) {
    return false;
  } else {
    if (fabs(clusterOne.averageRMS() - sqrt(clusterOne.averageMean())) <
        fabs(clusterTwo.averageRMS() - sqrt(clusterTwo.averageMean()))) {
      return true;
    }
  }
  return false;
}