1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
/*
* See header file for a description of this class.
*
* \author G. Cerminara - INFN Torino
*/
#include "DTOccupancyClusterBuilder.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "TCanvas.h"
#include "TH2F.h"
#include <algorithm>
#include <sstream>
#include <iostream>
using namespace std;
using namespace edm;
DTOccupancyClusterBuilder::DTOccupancyClusterBuilder() : maxMean(-1.), maxRMS(-1.) {}
DTOccupancyClusterBuilder::~DTOccupancyClusterBuilder() {}
void DTOccupancyClusterBuilder::addPoint(const DTOccupancyPoint& point) {
// loop over points already stored
for (set<DTOccupancyPoint>::const_iterator pt = thePoints.begin(); pt != thePoints.end(); ++pt) {
theDistances[(*pt).distance(point)] = make_pair(*pt, point);
}
thePoints.insert(point);
}
void DTOccupancyClusterBuilder::buildClusters() {
while (buildNewCluster()) {
if (thePoints.size() <= 1)
break;
}
// build single point clusters with the remaining points
for (set<DTOccupancyPoint>::const_iterator pt = thePoints.begin(); pt != thePoints.end(); ++pt) {
DTOccupancyCluster clusterCandidate(*pt);
theClusters.push_back(clusterCandidate);
// store the range for building the histograms later
if (clusterCandidate.maxMean() > maxMean)
maxMean = clusterCandidate.maxMean();
if (clusterCandidate.maxRMS() > maxRMS)
maxRMS = clusterCandidate.maxRMS();
}
LogTrace("DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyClusterBuilder")
<< " # of valid clusters: " << theClusters.size() << endl;
sortClusters();
}
void DTOccupancyClusterBuilder::drawClusters(std::string canvasName) {
int nBinsX = 100;
int nBinsY = 100;
int colorMap[12] = {632, 600, 800, 400, 820, 416, 432, 880, 616, 860, 900, 920};
TCanvas* canvas = new TCanvas(canvasName.c_str(), canvasName.c_str());
canvas->cd();
for (vector<DTOccupancyCluster>::const_iterator cluster = theClusters.begin(); cluster != theClusters.end();
++cluster) {
stringstream stream;
stream << canvasName << "_" << cluster - theClusters.begin();
string histoName = stream.str();
TH2F* histo = (*cluster).getHisto(histoName,
nBinsX,
0,
maxMean + 3 * maxMean / 100.,
nBinsY,
0,
maxRMS + 3 * maxRMS / 100.,
colorMap[cluster - theClusters.begin()]);
if (cluster == theClusters.begin())
histo->Draw("box");
else
histo->Draw("box,same");
}
}
std::pair<DTOccupancyPoint, DTOccupancyPoint> DTOccupancyClusterBuilder::getInitialPair() {
return theDistances.begin()->second;
}
void DTOccupancyClusterBuilder::computePointToPointDistances() {
theDistances.clear();
for (set<DTOccupancyPoint>::const_iterator pt_i = thePoints.begin(); pt_i != thePoints.end(); ++pt_i) { // i loopo
for (set<DTOccupancyPoint>::const_iterator pt_j = thePoints.begin(); pt_j != thePoints.end(); ++pt_j) { // j loop
if (*pt_i != *pt_j) {
theDistances[pt_i->distance(*pt_j)] = make_pair(*pt_i, *pt_j);
}
}
}
}
void DTOccupancyClusterBuilder::computeDistancesToCluster(const DTOccupancyCluster& cluster) {
theDistancesFromTheCluster.clear();
for (set<DTOccupancyPoint>::const_iterator pt = thePoints.begin(); pt != thePoints.end(); ++pt) {
theDistancesFromTheCluster[cluster.distance(*pt)] = *pt;
}
}
bool DTOccupancyClusterBuilder::buildNewCluster() {
LogTrace("DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyClusterBuilder")
<< "--------- New Cluster Candidate ----------------------" << endl;
pair<DTOccupancyPoint, DTOccupancyPoint> initialPair = getInitialPair();
LogTrace("DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyClusterBuilder")
<< " Initial Pair: " << endl
<< " point1: mean " << initialPair.first.mean() << " rms " << initialPair.first.rms() << endl
<< " point2: mean " << initialPair.second.mean() << " rms " << initialPair.second.rms() << endl;
DTOccupancyCluster clusterCandidate(initialPair.first, initialPair.second);
if (clusterCandidate.isValid()) {
// remove already used pair
thePoints.erase(initialPair.first);
thePoints.erase(initialPair.second);
if (!thePoints.empty()) {
computeDistancesToCluster(clusterCandidate);
while (clusterCandidate.addPoint(theDistancesFromTheCluster.begin()->second)) {
thePoints.erase(theDistancesFromTheCluster.begin()->second);
if (thePoints.empty())
break;
computeDistancesToCluster(clusterCandidate);
}
}
} else {
return false;
}
LogTrace("DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyClusterBuilder")
<< " # of layers: " << clusterCandidate.nPoints() << " avrg. mean: " << clusterCandidate.averageMean()
<< " avrg. rms: " << clusterCandidate.averageRMS() << endl;
theClusters.push_back(clusterCandidate);
// store the range for building the histograms later
if (clusterCandidate.maxMean() > maxMean)
maxMean = clusterCandidate.maxMean();
if (clusterCandidate.maxRMS() > maxRMS)
maxRMS = clusterCandidate.maxRMS();
computePointToPointDistances();
return true;
}
void DTOccupancyClusterBuilder::sortClusters() {
LogTrace("DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyClusterBuilder") << " sorting" << endl;
sort(theClusters.begin(), theClusters.end(), clusterIsLessThan);
// we save the detid of the clusters which are not the best one
for (vector<DTOccupancyCluster>::const_iterator cluster = ++(theClusters.begin()); cluster != theClusters.end();
++cluster) { // loop over clusters skipping the first
set<DTLayerId> clusterLayers = (*cluster).getLayerIDs();
LogTrace("DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyClusterBuilder")
<< " # layers in the cluster: " << clusterLayers.size() << endl;
theProblematicLayers.insert(clusterLayers.begin(), clusterLayers.end());
}
LogTrace("DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyClusterBuilder")
<< " # of problematic layers: " << theProblematicLayers.size() << endl;
}
DTOccupancyCluster DTOccupancyClusterBuilder::getBestCluster() const { return theClusters.front(); }
bool DTOccupancyClusterBuilder::isProblematic(DTLayerId layerId) const {
if (theProblematicLayers.find(layerId) != theProblematicLayers.end()) {
return true;
}
return false;
}
|