Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
#include "DQM/EcalMonitorClient/interface/LaserClient.h"

#include "DataFormats/EcalDetId/interface/EcalPnDiodeDetId.h"

#include "CondFormats/EcalObjects/interface/EcalDQMStatusHelper.h"

#include "DQM/EcalCommon/interface/EcalDQMCommonUtils.h"
#include "DQM/EcalCommon/interface/MESetMulti.h"

#include "FWCore/ParameterSet/interface/ParameterSet.h"

#include <cmath>

namespace ecaldqm {
  LaserClient::LaserClient()
      : DQWorkerClient(),
        wlToME_(),
        minChannelEntries_(0),
        expectedAmplitude_(0),
        toleranceAmplitudeLo_(0.),
        toleranceAmplitudeFwdLo_(0.),
        toleranceAmplitudeHi_(0.),
        toleranceAmpRMSRatio_(0.),
        expectedTiming_(0),
        toleranceTiming_(0.),
        toleranceTimRMS_(0.),
        expectedPNAmplitude_(0),
        tolerancePNAmp_(0.),
        tolerancePNRMSRatio_(0.),
        forwardFactor_(0.) {}

  void LaserClient::setParams(edm::ParameterSet const& _params) {
    minChannelEntries_ = _params.getUntrackedParameter<int>("minChannelEntries");
    toleranceAmplitudeLo_ = _params.getUntrackedParameter<double>("toleranceAmplitudeLo");
    toleranceAmplitudeFwdLo_ = _params.getUntrackedParameter<double>("toleranceAmplitudeFwdLo");
    toleranceAmplitudeHi_ = _params.getUntrackedParameter<double>("toleranceAmplitudeHi");
    toleranceAmpRMSRatio_ = _params.getUntrackedParameter<double>("toleranceAmpRMSRatio");
    toleranceTiming_ = _params.getUntrackedParameter<double>("toleranceTiming");
    toleranceTimRMS_ = _params.getUntrackedParameter<double>("toleranceTimRMS");
    tolerancePNAmp_ = _params.getUntrackedParameter<double>("tolerancePNAmp");
    tolerancePNRMSRatio_ = _params.getUntrackedParameter<double>("tolerancePNRMSRatio");
    forwardFactor_ = _params.getUntrackedParameter<double>("forwardFactor");

    std::vector<int> laserWavelengths(_params.getUntrackedParameter<std::vector<int> >("laserWavelengths"));

    // wavelengths are not necessarily ordered
    // create a map wl -> MESet index
    // using Amplitude here but any multi-wavelength plot is fine

    MESet::PathReplacements repl;

    MESetMulti const& amplitude(static_cast<MESetMulti const&>(sources_.at("Amplitude")));
    unsigned nWL(laserWavelengths.size());
    for (unsigned iWL(0); iWL != nWL; ++iWL) {
      int wl(laserWavelengths[iWL]);
      if (wl <= 0 || wl >= 5)
        throw cms::Exception("InvalidConfiguration") << "Laser Wavelength";
      repl["wl"] = std::to_string(wl);
      wlToME_[wl] = amplitude.getIndex(repl);
    }

    expectedAmplitude_.resize(nWL);
    expectedTiming_.resize(nWL);
    expectedPNAmplitude_.resize(nWL);

    std::vector<double> inExpectedAmplitude(_params.getUntrackedParameter<std::vector<double> >("expectedAmplitude"));
    std::vector<double> inExpectedTiming(_params.getUntrackedParameter<std::vector<double> >("expectedTiming"));
    std::vector<double> inExpectedPNAmplitude(
        _params.getUntrackedParameter<std::vector<double> >("expectedPNAmplitude"));

    for (std::map<int, unsigned>::iterator wlItr(wlToME_.begin()); wlItr != wlToME_.end(); ++wlItr) {
      unsigned iME(wlItr->second);
      int iWL(wlItr->first - 1);
      expectedAmplitude_[iME] = inExpectedAmplitude[iWL];
      expectedTiming_[iME] = inExpectedTiming[iWL];
      expectedPNAmplitude_[iME] = inExpectedPNAmplitude[iWL];
    }

    qualitySummaries_.insert("Quality");
    qualitySummaries_.insert("QualitySummary");
    qualitySummaries_.insert("PNQualitySummary");
  }

  void LaserClient::producePlots(ProcessType) {
    uint32_t mask(1 << EcalDQMStatusHelper::LASER_MEAN_ERROR | 1 << EcalDQMStatusHelper::LASER_RMS_ERROR |
                  1 << EcalDQMStatusHelper::LASER_TIMING_MEAN_ERROR | 1 << EcalDQMStatusHelper::LASER_TIMING_RMS_ERROR);

    MESetMulti& meQuality(static_cast<MESetMulti&>(MEs_.at("Quality")));
    MESetMulti& meQualitySummary(static_cast<MESetMulti&>(MEs_.at("QualitySummary")));
    MESetMulti& meAmplitudeMean(static_cast<MESetMulti&>(MEs_.at("AmplitudeMean")));
    MESetMulti& meAmplitudeRMS(static_cast<MESetMulti&>(MEs_.at("AmplitudeRMS")));
    MESetMulti& meTimingMean(static_cast<MESetMulti&>(MEs_.at("TimingMean")));
    MESetMulti& meTimingRMSMap(static_cast<MESetMulti&>(MEs_.at("TimingRMSMap")));
    MESetMulti& meTimingRMS(static_cast<MESetMulti&>(MEs_.at("TimingRMS")));
    MESetMulti& mePNQualitySummary(static_cast<MESetMulti&>(MEs_.at("PNQualitySummary")));

    MESetMulti const& sAmplitude(static_cast<MESetMulti const&>(sources_.at("Amplitude")));
    MESetMulti const& sTiming(static_cast<MESetMulti const&>(sources_.at("Timing")));
    MESetMulti const& sPNAmplitude(static_cast<MESetMulti const&>(sources_.at("PNAmplitude")));
    MESet const& sCalibStatus(static_cast<MESet const&>(sources_.at("CalibStatus")));

    for (std::map<int, unsigned>::iterator wlItr(wlToME_.begin()); wlItr != wlToME_.end(); ++wlItr) {
      meQuality.use(wlItr->second);
      meQualitySummary.use(wlItr->second);
      meAmplitudeMean.use(wlItr->second);
      meAmplitudeRMS.use(wlItr->second);
      meTimingMean.use(wlItr->second);
      meTimingRMSMap.use(wlItr->second);
      meTimingRMS.use(wlItr->second);
      mePNQualitySummary.use(wlItr->second);

      sAmplitude.use(wlItr->second);
      sTiming.use(wlItr->second);
      sPNAmplitude.use(wlItr->second);

      MESet::iterator qEnd(meQuality.end(GetElectronicsMap()));

      MESet::const_iterator tItr(GetElectronicsMap(), sTiming);
      MESet::const_iterator aItr(GetElectronicsMap(), sAmplitude);

      int wl(wlItr->first - 1);
      bool enabled(wl < 0 ? false : sCalibStatus.getBinContent(getEcalDQMSetupObjects(), wl) > 0 ? true : false);
      for (MESet::iterator qItr(meQuality.beginChannel(GetElectronicsMap())); qItr != qEnd;
           qItr.toNextChannel(GetElectronicsMap())) {
        DetId id(qItr->getId());

        bool doMask(meQuality.maskMatches(id, mask, statusManager_, GetTrigTowerMap()));

        aItr = qItr;

        float aEntries(aItr->getBinEntries());

        if (aEntries < minChannelEntries_) {
          qItr->setBinContent(enabled ? (doMask ? kMUnknown : kUnknown) : kMUnknown);
          continue;
        }

        float aMean(aItr->getBinContent());
        float aRms(aItr->getBinError() * sqrt(aEntries));

        meAmplitudeMean.fill(getEcalDQMSetupObjects(), id, aMean);
        meAmplitudeRMS.setBinContent(getEcalDQMSetupObjects(), id, aRms);

        tItr = qItr;

        float tEntries(tItr->getBinEntries());

        if (tEntries < minChannelEntries_)
          continue;

        float tMean(tItr->getBinContent());
        float tRms(tItr->getBinError() * sqrt(tEntries));
        float threshAmplitudeLo_;

        meTimingMean.fill(getEcalDQMSetupObjects(), id, tMean);
        meTimingRMS.fill(getEcalDQMSetupObjects(), id, tRms);
        meTimingRMSMap.setBinContent(getEcalDQMSetupObjects(), id, tRms);

        float intensity(aMean / expectedAmplitude_[wlItr->second]);
        if (isForward(id)) {
          intensity /= forwardFactor_;
          threshAmplitudeLo_ = toleranceAmplitudeFwdLo_;
        } else
          threshAmplitudeLo_ = toleranceAmplitudeLo_;

        if (intensity < threshAmplitudeLo_ || intensity > toleranceAmplitudeHi_ ||
            aRms > aMean * toleranceAmpRMSRatio_ ||
            std::abs(tMean - expectedTiming_[wlItr->second]) > toleranceTiming_ /*|| tRms > toleranceTimRMS_*/)
          qItr->setBinContent(doMask ? kMBad : kBad);
        else
          qItr->setBinContent(doMask ? kMGood : kGood);
      }

      towerAverage_(meQualitySummary, meQuality, 0.2);

      for (unsigned iDCC(0); iDCC < nDCC; ++iDCC) {
        if (memDCCIndex(iDCC + 1) == unsigned(-1))
          continue;
        int subdet(0);
        if (iDCC >= kEBmLow && iDCC <= kEBpHigh)
          subdet = EcalBarrel;
        else
          subdet = EcalEndcap;

        for (unsigned iPN(0); iPN < 10; ++iPN) {
          EcalPnDiodeDetId id(subdet, iDCC + 1, iPN + 1);

          bool doMask(mePNQualitySummary.maskMatches(id, mask, statusManager_, GetTrigTowerMap()));

          float pEntries(sPNAmplitude.getBinEntries(getEcalDQMSetupObjects(), id));

          if (pEntries < minChannelEntries_) {
            mePNQualitySummary.setBinContent(getEcalDQMSetupObjects(), id, doMask ? kMUnknown : kUnknown);
            continue;
          }

          float pMean(sPNAmplitude.getBinContent(getEcalDQMSetupObjects(), id));
          float pRms(sPNAmplitude.getBinError(getEcalDQMSetupObjects(), id) * sqrt(pEntries));
          float intensity(pMean / expectedPNAmplitude_[wlItr->second]);

          if (intensity < tolerancePNAmp_ || pRms > pMean * tolerancePNRMSRatio_)
            mePNQualitySummary.setBinContent(getEcalDQMSetupObjects(), id, doMask ? kMBad : kBad);
          else
            mePNQualitySummary.setBinContent(getEcalDQMSetupObjects(), id, doMask ? kMGood : kGood);
        }
      }
    }
  }

  DEFINE_ECALDQM_WORKER(LaserClient);
}  // namespace ecaldqm