1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
#include "DQM/EcalMonitorClient/interface/TimingClient.h"
#include "DQM/EcalCommon/interface/EcalDQMCommonUtils.h"
#include "CondFormats/EcalObjects/interface/EcalDQMStatusHelper.h"
#include "CondFormats/EcalObjects/interface/EcalChannelStatusCode.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include <cmath>
namespace ecaldqm {
TimingClient::TimingClient()
: DQWorkerClient(),
ebtoleranceMean_(0.),
eetoleranceMean_(0.),
toleranceMeanFwd_(0.),
toleranceRMS_(0.),
toleranceRMSFwd_(0.),
minChannelEntries_(0),
minChannelEntriesFwd_(0),
minTowerEntries_(0),
minTowerEntriesFwd_(0),
tailPopulThreshold_(0.) {
qualitySummaries_.insert("Quality");
qualitySummaries_.insert("QualitySummary");
}
void TimingClient::setParams(edm::ParameterSet const& _params) {
ebtoleranceMean_ = _params.getUntrackedParameter<double>("ebtoleranceMean");
eetoleranceMean_ = _params.getUntrackedParameter<double>("eetoleranceMean");
toleranceMeanFwd_ = _params.getUntrackedParameter<double>("toleranceMeanFwd");
toleranceRMS_ = _params.getUntrackedParameter<double>("toleranceRMS");
toleranceRMSFwd_ = _params.getUntrackedParameter<double>("toleranceRMSFwd");
minChannelEntries_ = _params.getUntrackedParameter<int>("minChannelEntries");
minChannelEntriesFwd_ = _params.getUntrackedParameter<int>("minChannelEntriesFwd");
minTowerEntries_ = _params.getUntrackedParameter<int>("minTowerEntries");
minTowerEntriesFwd_ = _params.getUntrackedParameter<int>("minChannelEntriesFwd");
tailPopulThreshold_ = _params.getUntrackedParameter<double>("tailPopulThreshold");
}
void TimingClient::producePlots(ProcessType) {
MESet& meQuality(MEs_.at("Quality"));
MESet& meMeanSM(MEs_.at("MeanSM"));
MESet& meMeanAll(MEs_.at("MeanAll"));
MESet& meFwdBkwdDiff(MEs_.at("FwdBkwdDiff"));
MESet& meFwdvBkwd(MEs_.at("FwdvBkwd"));
MESet& meRMSMap(MEs_.at("RMSMap"));
MESet& meRMSAll(MEs_.at("RMSAll"));
MESet& meProjEta(MEs_.at("ProjEta"));
MESet& meProjPhi(MEs_.at("ProjPhi"));
MESet& meQualitySummary(MEs_.at("QualitySummary"));
MESet const& sTimeAllMap(sources_.at("TimeAllMap"));
MESet const& sTimeMap(sources_.at("TimeMap"));
MESet const& sTimeMapByLS(sources_.at("TimeMapByLS"));
MESet const& sChStatus(sources_.at("ChStatus"));
uint32_t mask(1 << EcalDQMStatusHelper::PHYSICS_BAD_CHANNEL_WARNING);
MESet::iterator qEnd(meQuality.end(GetElectronicsMap()));
MESet::iterator rItr(GetElectronicsMap(), meRMSMap);
MESet::const_iterator tItr(GetElectronicsMap(), sTimeMap);
MESet::const_iterator tLSItr(GetElectronicsMap(), sTimeMapByLS);
float EBentries(0.), EEentries(0.);
float EBmean(0.), EEmean(0.);
float EBrms(0.), EErms(0.);
for (MESet::iterator qItr(meQuality.beginChannel(GetElectronicsMap())); qItr != qEnd;
qItr.toNextChannel(GetElectronicsMap())) {
tItr = qItr;
rItr = qItr;
DetId id(qItr->getId());
int minChannelEntries(minChannelEntries_);
float meanThresh;
float rmsThresh(toleranceRMS_);
if (id.subdetId() == EcalBarrel)
meanThresh = ebtoleranceMean_;
else
meanThresh = eetoleranceMean_;
if (isForward(id)) {
minChannelEntries = minChannelEntriesFwd_;
meanThresh = toleranceMeanFwd_;
rmsThresh = toleranceRMSFwd_;
}
bool doMask(meQuality.maskMatches(id, mask, statusManager_, GetTrigTowerMap()));
float entries(tItr->getBinEntries());
if (entries < minChannelEntries) {
qItr->setBinContent(doMask ? kMUnknown : kUnknown);
rItr->setBinContent(-1.);
continue;
}
float mean(tItr->getBinContent());
float rms(tItr->getBinError() * sqrt(entries));
meMeanSM.fill(getEcalDQMSetupObjects(), id, mean);
meMeanAll.fill(getEcalDQMSetupObjects(), id, mean);
meProjEta.fill(getEcalDQMSetupObjects(), id, mean);
meProjPhi.fill(getEcalDQMSetupObjects(), id, mean);
meRMSAll.fill(getEcalDQMSetupObjects(), id, rms);
rItr->setBinContent(rms);
bool negative(false);
float posTime(0.);
if (id.subdetId() == EcalBarrel) {
EBDetId ebid(id);
if (ebid.zside() < 0) {
negative = true;
EBDetId posId(EBDetId::switchZSide(ebid));
posTime = sTimeMap.getBinContent(getEcalDQMSetupObjects(), posId);
}
} else {
EEDetId eeid(id);
if (eeid.zside() < 0) {
negative = true;
EEDetId posId(EEDetId::switchZSide(eeid));
posTime = sTimeMap.getBinContent(getEcalDQMSetupObjects(), posId);
}
}
if (negative) {
meFwdBkwdDiff.fill(getEcalDQMSetupObjects(), id, posTime - mean);
meFwdvBkwd.fill(getEcalDQMSetupObjects(), id, mean, posTime);
}
if (std::abs(mean) > meanThresh || rms > rmsThresh)
qItr->setBinContent(doMask ? kMBad : kBad);
else
qItr->setBinContent(doMask ? kMGood : kGood);
// For Trend plots:
tLSItr = qItr;
float entriesLS(tLSItr->getBinEntries());
float meanLS(tLSItr->getBinContent());
float rmsLS(tLSItr->getBinError() * sqrt(entriesLS));
int chStatus = static_cast<int>(sChStatus.getBinContent(getEcalDQMSetupObjects(), id));
if (entriesLS < minChannelEntries)
continue;
if (chStatus != EcalChannelStatusCode::kOk)
continue; // exclude problematic channels
// Keep running count of timing mean, rms, and N_hits
if (id.subdetId() == EcalBarrel) {
EBmean += meanLS;
EBrms += rmsLS;
EBentries += entriesLS;
} else {
EEmean += meanLS;
EErms += rmsLS;
EEentries += entriesLS;
}
} // channel loop
// Fill Timing Trend plots at each LS
MESet& meTrendMean(MEs_.at("TrendMean"));
MESet& meTrendRMS(MEs_.at("TrendRMS"));
if (EBentries > 0.) {
if (std::abs(EBmean) > 0.)
meTrendMean.fill(getEcalDQMSetupObjects(), EcalBarrel, double(timestamp_.iLumi), EBmean / EBentries);
if (std::abs(EBrms) > 0.)
meTrendRMS.fill(getEcalDQMSetupObjects(), EcalBarrel, double(timestamp_.iLumi), EBrms / EBentries);
}
if (EEentries > 0.) {
if (std::abs(EEmean) > 0.)
meTrendMean.fill(getEcalDQMSetupObjects(), EcalEndcap, double(timestamp_.iLumi), EEmean / EEentries);
if (std::abs(EErms) > 0.)
meTrendRMS.fill(getEcalDQMSetupObjects(), EcalEndcap, double(timestamp_.iLumi), EErms / EEentries);
}
MESet::iterator qsEnd(meQualitySummary.end(GetElectronicsMap()));
for (MESet::iterator qsItr(meQualitySummary.beginChannel(GetElectronicsMap())); qsItr != qsEnd;
qsItr.toNextChannel(GetElectronicsMap())) {
DetId tId(qsItr->getId());
std::vector<DetId> ids;
if (tId.subdetId() == EcalTriggerTower)
ids = GetTrigTowerMap()->constituentsOf(EcalTrigTowerDetId(tId));
else
ids = scConstituents(EcalScDetId(tId));
int minTowerEntries(minTowerEntries_);
float meanThresh;
float rmsThresh(toleranceRMS_);
if (tId.subdetId() == EcalBarrel)
meanThresh = ebtoleranceMean_;
else
meanThresh = eetoleranceMean_;
if (isForward(tId)) {
minTowerEntries = minTowerEntriesFwd_;
meanThresh = toleranceMeanFwd_;
rmsThresh = toleranceRMSFwd_;
}
// tower entries != sum(channel entries) because of the difference in timing cut at the source
float summaryEntries(sTimeAllMap.getBinEntries(getEcalDQMSetupObjects(), tId));
float towerEntries(0.);
float towerMean(0.);
float towerMean2(0.);
bool doMask(false);
for (std::vector<DetId>::iterator idItr(ids.begin()); idItr != ids.end(); ++idItr) {
DetId& id(*idItr);
doMask |= meQuality.maskMatches(id, mask, statusManager_, GetTrigTowerMap());
MESet::const_iterator tmItr(GetElectronicsMap(), sTimeMap, id);
float entries(tmItr->getBinEntries());
if (entries < 0.)
continue;
towerEntries += entries;
float mean(tmItr->getBinContent());
towerMean += mean * entries;
float rms(tmItr->getBinError() * sqrt(entries));
towerMean2 += (rms * rms + mean * mean) * entries;
}
double quality(doMask ? kMUnknown : kUnknown);
if (towerEntries / ids.size() > minTowerEntries / 25.) {
if (summaryEntries < towerEntries * (1. - tailPopulThreshold_)) // large timing deviation
quality = doMask ? kMBad : kBad;
else {
towerMean /= towerEntries;
towerMean2 /= towerEntries;
float towerRMS(sqrt(towerMean2 - towerMean * towerMean));
if (std::abs(towerMean) > meanThresh || towerRMS > rmsThresh)
quality = doMask ? kMBad : kBad;
else
quality = doMask ? kMGood : kGood;
}
}
qsItr->setBinContent(quality);
}
}
DEFINE_ECALDQM_WORKER(TimingClient);
} // namespace ecaldqm
|