1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
#include "DQM/EcalMonitorClient/interface/TrigPrimClient.h"
#include "DQM/EcalCommon/interface/EcalDQMCommonUtils.h"
#include "DQM/EcalCommon/interface/MESetNonObject.h"
#include "CondFormats/EcalObjects/interface/EcalDQMStatusHelper.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include <cmath>
namespace ecaldqm {
TrigPrimClient::TrigPrimClient()
: DQWorkerClient(), minEntries_(0), errorFractionThreshold_(0.), TTF4MaskingAlarmThreshold_(0.) {
qualitySummaries_.insert("EmulQualitySummary");
}
void TrigPrimClient::setParams(edm::ParameterSet const& _params) {
minEntries_ = _params.getUntrackedParameter<int>("minEntries");
errorFractionThreshold_ = _params.getUntrackedParameter<double>("errorFractionThreshold");
TTF4MaskingAlarmThreshold_ = _params.getUntrackedParameter<double>("TTF4MaskingAlarmThreshold");
sourceFromEmul_ = _params.getUntrackedParameter<bool>("sourceFromEmul");
if (!sourceFromEmul_) {
MEs_.erase(std::string("NonSingleSummary"));
MEs_.erase(std::string("TimingSummary"));
sources_.erase(std::string("EtEmulError"));
sources_.erase(std::string("MatchedIndex"));
}
}
void TrigPrimClient::producePlots(ProcessType) {
MESet* meNonSingleSummary = nullptr;
MESet* meTimingSummary = nullptr;
MESet* sEtEmulError = nullptr;
MESet* sMatchedIndex = nullptr;
MESet& meEmulQualitySummary(MEs_.at("EmulQualitySummary"));
MESet& meTrendTTF4Flags(MEs_.at("TrendTTF4Flags"));
MESet const& sTPDigiThrAll(sources_.at("TPDigiThrAll"));
MESetNonObject const& sLHCStatusByLumi(static_cast<MESetNonObject&>(sources_.at("LHCStatusByLumi")));
uint32_t mask(1 << EcalDQMStatusHelper::PHYSICS_BAD_CHANNEL_WARNING);
// Store # of entries for Occupancy analysis
std::vector<float> Nentries(nDCC, 0.);
double currentLHCStatus = sLHCStatusByLumi.getFloatValue();
bool statsCheckEnabled =
((currentLHCStatus > 10.5 && currentLHCStatus < 11.5) ||
currentLHCStatus < 0); // currentLHCStatus = -1 is the default when no beam info is available
for (unsigned iTT(0); iTT < EcalTrigTowerDetId::kSizeForDenseIndexing; iTT++) {
EcalTrigTowerDetId ttid(EcalTrigTowerDetId::detIdFromDenseIndex(iTT));
bool doMask(meEmulQualitySummary.maskMatches(ttid, mask, statusManager_, GetTrigTowerMap()));
if (sourceFromEmul_) {
sEtEmulError = &sources_.at("EtEmulError");
sMatchedIndex = &sources_.at("MatchedIndex");
meNonSingleSummary = &MEs_.at("NonSingleSummary");
meTimingSummary = &MEs_.at("TimingSummary");
float towerEntries(0.);
float tMax(0.5);
float nMax(0.);
for (int iBin(0); iBin < 6; iBin++) {
float entries(sMatchedIndex->getBinContent(getEcalDQMSetupObjects(), ttid, iBin + 1));
towerEntries += entries;
if (entries > nMax) {
nMax = entries;
tMax = iBin == 0 ? -0.5 : iBin + 0.5; // historical reasons.. much clearer to say "no entry = -0.5"
}
}
meTimingSummary->setBinContent(getEcalDQMSetupObjects(), ttid, tMax);
if (towerEntries < minEntries_) {
meEmulQualitySummary.setBinContent(getEcalDQMSetupObjects(), ttid, doMask ? kMUnknown : kUnknown);
continue;
}
float nonsingleFraction(1. - nMax / towerEntries);
if (nonsingleFraction > 0.) {
meNonSingleSummary->setBinContent(getEcalDQMSetupObjects(), ttid, nonsingleFraction);
}
if (sEtEmulError->getBinContent(getEcalDQMSetupObjects(), ttid) / towerEntries > errorFractionThreshold_) {
meEmulQualitySummary.setBinContent(getEcalDQMSetupObjects(), ttid, doMask ? kMBad : kBad);
} else {
meEmulQualitySummary.setBinContent(getEcalDQMSetupObjects(), ttid, doMask ? kMGood : kGood);
}
}
// Keep count for Occupancy analysis
unsigned iDCC(dccId(ttid, GetElectronicsMap()) - 1);
Nentries[iDCC] += sTPDigiThrAll.getBinContent(getEcalDQMSetupObjects(), ttid);
}
// Fill TTF4 v Masking ME
// NOT an occupancy plot: only tells you if non-zero TTF4 occupancy was seen
// without giving info about how many were seen
MESet& meTTF4vMask(MEs_.at("TTF4vMask"));
MESet& meTTF4vMaskByLumi(MEs_.at("TTF4vMaskByLumi"));
MESet const& sTTFlags4(sources_.at("TTFlags4"));
MESet const& sTTFlags4ByLumi(sources_.at("TTFlags4ByLumi"));
MESet const& sTTMaskMapAll(sources_.at("TTMaskMapAll"));
std::vector<float> nWithTTF4(nDCC,
0.); // counters to keep track of number of towers in a DCC that have TTF4 flag set
int nWithTTF4_EE = 0; // total number of towers in EE with TTF4
int nWithTTF4_EB = 0; // total number of towers in EB with TTF4
// Loop over all TTs
for (unsigned iTT(0); iTT < EcalTrigTowerDetId::kSizeForDenseIndexing; iTT++) {
EcalTrigTowerDetId ttid(EcalTrigTowerDetId::detIdFromDenseIndex(iTT));
unsigned iDCC(dccId(ttid, GetElectronicsMap()) - 1);
bool isMasked(sTTMaskMapAll.getBinContent(getEcalDQMSetupObjects(), ttid) > 0.);
bool hasTTF4(sTTFlags4.getBinContent(getEcalDQMSetupObjects(), ttid) > 0.);
bool hasTTF4InThisLumiSection(sTTFlags4ByLumi.getBinContent(getEcalDQMSetupObjects(), ttid) > 0.);
if (hasTTF4InThisLumiSection) {
nWithTTF4[iDCC]++;
if (ttid.subDet() == EcalBarrel)
nWithTTF4_EB++;
else if (ttid.subDet() == EcalEndcap)
nWithTTF4_EE++;
}
if (isMasked) {
if (hasTTF4) {
meTTF4vMask.setBinContent(getEcalDQMSetupObjects(), ttid, 12); // Masked, has TTF4
} else {
meTTF4vMask.setBinContent(getEcalDQMSetupObjects(), ttid, 11); // Masked, no TTF4
}
if (hasTTF4InThisLumiSection) {
meTTF4vMaskByLumi.setBinContent(getEcalDQMSetupObjects(), ttid, 12); // Masked, has TTF4
} else {
meTTF4vMaskByLumi.setBinContent(getEcalDQMSetupObjects(), ttid, 11); // Masked, no TTF4
}
} else {
if (hasTTF4)
meTTF4vMask.setBinContent(getEcalDQMSetupObjects(), ttid, 13); // not Masked, has TTF4
if (hasTTF4InThisLumiSection)
meTTF4vMaskByLumi.setBinContent(getEcalDQMSetupObjects(), ttid, 13); // not Masked, has TTF4
}
} // TT loop
// Fill trend plots for number of TTs with TTF4 flag set
meTrendTTF4Flags.fill(getEcalDQMSetupObjects(), EcalBarrel, double(timestamp_.iLumi), nWithTTF4_EB);
meTrendTTF4Flags.fill(getEcalDQMSetupObjects(), EcalEndcap, double(timestamp_.iLumi), nWithTTF4_EE);
// Quality check: set an entire FED to BAD if a more than 80% of the TTs in that FED show any DCC-SRP flag mismatch errors
// Fill flag mismatch statistics
std::vector<float> nTTs(nDCC, 0.);
std::vector<float> nTTFMismath(nDCC, 0.);
MESet const& sTTFMismatch(sources_.at("TTFMismatch"));
for (unsigned iTT(0); iTT < EcalTrigTowerDetId::kSizeForDenseIndexing; iTT++) {
EcalTrigTowerDetId ttid(EcalTrigTowerDetId::detIdFromDenseIndex(iTT));
unsigned iDCC(dccId(ttid, GetElectronicsMap()) - 1);
if (sTTFMismatch.getBinContent(getEcalDQMSetupObjects(), ttid) > 0.)
nTTFMismath[iDCC]++;
nTTs[iDCC]++;
}
// Analyze flag mismatch statistics and TTF4 fraction statistics
for (unsigned iTT(0); iTT < EcalTrigTowerDetId::kSizeForDenseIndexing; iTT++) {
EcalTrigTowerDetId ttid(EcalTrigTowerDetId::detIdFromDenseIndex(iTT));
unsigned iDCC(dccId(ttid, GetElectronicsMap()) - 1);
if (nTTFMismath[iDCC] > 0.8 * nTTs[iDCC] || nWithTTF4[iDCC] > TTF4MaskingAlarmThreshold_ * nTTs[iDCC]) {
meEmulQualitySummary.setBinContent(
getEcalDQMSetupObjects(),
ttid,
meEmulQualitySummary.maskMatches(ttid, mask, statusManager_, GetTrigTowerMap()) ? kMBad : kBad);
}
}
// Quality check: set entire FED to BAD if its occupancy begins to vanish
// Fill FED statistics from TP digi occupancy
float meanFEDEB(0.), meanFEDEE(0.), rmsFEDEB(0.), rmsFEDEE(0.);
unsigned int nFEDEB(0), nFEDEE(0);
for (unsigned iDCC(0); iDCC < nDCC; iDCC++) {
if (iDCC >= kEBmLow && iDCC <= kEBpHigh) {
meanFEDEB += Nentries[iDCC];
rmsFEDEB += Nentries[iDCC] * Nentries[iDCC];
nFEDEB++;
} else {
meanFEDEE += Nentries[iDCC];
rmsFEDEE += Nentries[iDCC] * Nentries[iDCC];
nFEDEE++;
}
}
meanFEDEB /= float(nFEDEB);
rmsFEDEB /= float(nFEDEB);
meanFEDEE /= float(nFEDEE);
rmsFEDEE /= float(nFEDEE);
rmsFEDEB = sqrt(std::abs(rmsFEDEB - meanFEDEB * meanFEDEB));
rmsFEDEE = sqrt(std::abs(rmsFEDEE - meanFEDEE * meanFEDEE));
// Analyze FED statistics
float meanFED(0.), rmsFED(0.), nRMS(5.);
for (unsigned iTT(0); iTT < EcalTrigTowerDetId::kSizeForDenseIndexing; iTT++) {
EcalTrigTowerDetId ttid(EcalTrigTowerDetId::detIdFromDenseIndex(iTT));
unsigned iDCC(dccId(ttid, GetElectronicsMap()) - 1);
if (iDCC >= kEBmLow && iDCC <= kEBpHigh) {
meanFED = meanFEDEB;
rmsFED = rmsFEDEB;
} else {
meanFED = meanFEDEE;
rmsFED = rmsFEDEE;
}
float threshold(meanFED < nRMS * rmsFED ? minEntries_ : meanFED - nRMS * rmsFED);
if ((meanFED > 100. && Nentries[iDCC] < threshold) && statsCheckEnabled)
meEmulQualitySummary.setBinContent(
getEcalDQMSetupObjects(),
ttid,
meEmulQualitySummary.maskMatches(ttid, mask, statusManager_, GetTrigTowerMap()) ? kMBad : kBad);
}
} // producePlots()
DEFINE_ECALDQM_WORKER(TrigPrimClient);
} // namespace ecaldqm
|