1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
#include "DQM/EcalMonitorTasks/interface/PiZeroTask.h"
namespace ecaldqm {
PiZeroTask::PiZeroTask()
: DQWorkerTask(),
seleXtalMinEnergy_(0.f),
clusSeedThr_(0.f),
clusEtaSize_(0),
clusPhiSize_(0),
selePtGammaOne_(0.f),
selePtGammaTwo_(0.f),
seleS4S9GammaOne_(0.f),
seleS4S9GammaTwo_(0.f),
selePtPi0_(0.f),
selePi0Iso_(0.f),
selePi0BeltDR_(0.f),
selePi0BeltDeta_(0.f),
seleMinvMaxPi0_(0.f),
seleMinvMinPi0_(0.f),
posCalcParameters_(edm::ParameterSet()) {}
void PiZeroTask::setParams(edm::ParameterSet const& params) {
// Parameters needed for pi0 finding
seleXtalMinEnergy_ = params.getParameter<double>("seleXtalMinEnergy");
clusSeedThr_ = params.getParameter<double>("clusSeedThr");
clusEtaSize_ = params.getParameter<int>("clusEtaSize");
clusPhiSize_ = params.getParameter<int>("clusPhiSize");
selePtGammaOne_ = params.getParameter<double>("selePtGammaOne");
selePtGammaTwo_ = params.getParameter<double>("selePtGammaTwo");
seleS4S9GammaOne_ = params.getParameter<double>("seleS4S9GammaOne");
seleS4S9GammaTwo_ = params.getParameter<double>("seleS4S9GammaTwo");
selePtPi0_ = params.getParameter<double>("selePtPi0");
selePi0Iso_ = params.getParameter<double>("selePi0Iso");
selePi0BeltDR_ = params.getParameter<double>("selePi0BeltDR");
selePi0BeltDeta_ = params.getParameter<double>("selePi0BeltDeta");
seleMinvMaxPi0_ = params.getParameter<double>("seleMinvMaxPi0");
seleMinvMinPi0_ = params.getParameter<double>("seleMinvMinPi0");
posCalcParameters_ = params.getParameter<edm::ParameterSet>("posCalcParameters");
}
bool PiZeroTask::filterRunType(short const* runType) {
for (unsigned iFED(0); iFED != ecaldqm::nDCC; iFED++) {
if (runType[iFED] == EcalDCCHeaderBlock::COSMIC || runType[iFED] == EcalDCCHeaderBlock::MTCC ||
runType[iFED] == EcalDCCHeaderBlock::COSMICS_GLOBAL || runType[iFED] == EcalDCCHeaderBlock::PHYSICS_GLOBAL ||
runType[iFED] == EcalDCCHeaderBlock::COSMICS_LOCAL || runType[iFED] == EcalDCCHeaderBlock::PHYSICS_LOCAL)
return true;
}
return false;
}
void PiZeroTask::runOnEBRecHits(EcalRecHitCollection const& hits) {
MESet& mePi0MinvEB(MEs_.at("Pi0MinvEB"));
MESet& mePi0Pt1EB(MEs_.at("Pi0Pt1EB"));
MESet& mePi0Pt2EB(MEs_.at("Pi0Pt2EB"));
MESet& mePi0PtEB(MEs_.at("Pi0PtEB"));
MESet& mePi0IsoEB(MEs_.at("Pi0IsoEB"));
const CaloSubdetectorTopology* topology_p;
const CaloSubdetectorGeometry* geometry_p = GetGeometry()->getSubdetectorGeometry(DetId::Ecal, EcalBarrel);
const CaloSubdetectorGeometry* geometryES_p = GetGeometry()->getSubdetectorGeometry(DetId::Ecal, EcalPreshower);
// Parameters for the position calculation:
PositionCalc posCalculator_ = PositionCalc(posCalcParameters_);
std::map<DetId, EcalRecHit> recHitsEB_map;
std::vector<EcalRecHit> seeds;
std::vector<EBDetId> usedXtals;
seeds.clear();
usedXtals.clear();
int nClus = 0;
std::vector<float> eClus;
std::vector<float> etClus;
std::vector<float> etaClus;
std::vector<float> phiClus;
std::vector<EBDetId> max_hit;
std::vector<std::vector<EcalRecHit> > RecHitsCluster;
std::vector<float> s4s9Clus;
// Find cluster seeds in EB
for (auto const& hit : hits) {
EBDetId id(hit.id());
double energy = hit.energy();
if (energy > seleXtalMinEnergy_) {
std::pair<DetId, EcalRecHit> map_entry(hit.id(), hit);
recHitsEB_map.insert(map_entry);
}
if (energy > clusSeedThr_)
seeds.push_back(hit);
} // EB rechits
sort(seeds.begin(), seeds.end(), [](auto& x, auto& y) { return (x.energy() > y.energy()); });
for (auto const& seed : seeds) {
EBDetId seed_id = seed.id();
bool seedAlreadyUsed = false;
for (auto const& usedIds : usedXtals) {
if (usedIds == seed_id) {
seedAlreadyUsed = true;
break;
}
}
if (seedAlreadyUsed)
continue;
topology_p = GetTopology()->getSubdetectorTopology(DetId::Ecal, EcalBarrel);
std::vector<DetId> clus_v = topology_p->getWindow(seed_id, clusEtaSize_, clusPhiSize_);
std::vector<std::pair<DetId, float> > clus_used;
std::vector<EcalRecHit> RecHitsInWindow;
double simple_energy = 0;
for (auto const& det : clus_v) {
bool HitAlreadyUsed = false;
for (auto const& usedIds : usedXtals) {
if (usedIds == det) {
HitAlreadyUsed = true;
break;
}
}
if (HitAlreadyUsed)
continue;
if (recHitsEB_map.find(det) != recHitsEB_map.end()) {
std::map<DetId, EcalRecHit>::iterator aHit;
aHit = recHitsEB_map.find(det);
usedXtals.push_back(det);
RecHitsInWindow.push_back(aHit->second);
clus_used.push_back(std::pair<DetId, float>(det, 1.));
simple_energy = simple_energy + aHit->second.energy();
}
}
math::XYZPoint clus_pos = posCalculator_.Calculate_Location(clus_used, &hits, geometry_p, geometryES_p);
float theta_s = 2. * atan(exp(-clus_pos.eta()));
float p0x_s = simple_energy * sin(theta_s) * cos(clus_pos.phi());
float p0y_s = simple_energy * sin(theta_s) * sin(clus_pos.phi());
float et_s = sqrt(p0x_s * p0x_s + p0y_s * p0y_s);
eClus.push_back(simple_energy);
etClus.push_back(et_s);
etaClus.push_back(clus_pos.eta());
phiClus.push_back(clus_pos.phi());
max_hit.push_back(seed_id);
RecHitsCluster.push_back(RecHitsInWindow);
// Compute S4/S9 variable
// We are not sure to have 9 RecHits so need to check eta and phi:
float s4s9_[4];
for (int i = 0; i < 4; i++)
s4s9_[i] = seed.energy();
for (unsigned int j = 0; j < RecHitsInWindow.size(); j++) {
if ((((EBDetId)RecHitsInWindow[j].id()).ieta() == seed_id.ieta() - 1 && seed_id.ieta() != 1) ||
(seed_id.ieta() == 1 && (((EBDetId)RecHitsInWindow[j].id()).ieta() == seed_id.ieta() - 2))) {
if (((EBDetId)RecHitsInWindow[j].id()).iphi() == seed_id.iphi() - 1 ||
((EBDetId)RecHitsInWindow[j].id()).iphi() - 360 == seed_id.iphi() - 1) {
s4s9_[0] += RecHitsInWindow[j].energy();
} else {
if (((EBDetId)RecHitsInWindow[j].id()).iphi() == seed_id.iphi()) {
s4s9_[0] += RecHitsInWindow[j].energy();
s4s9_[1] += RecHitsInWindow[j].energy();
} else {
if (((EBDetId)RecHitsInWindow[j].id()).iphi() == seed_id.iphi() + 1 ||
((EBDetId)RecHitsInWindow[j].id()).iphi() - 360 == seed_id.iphi() + 1) {
s4s9_[1] += RecHitsInWindow[j].energy();
}
}
}
} else {
if (((EBDetId)RecHitsInWindow[j].id()).ieta() == seed_id.ieta()) {
if (((EBDetId)RecHitsInWindow[j].id()).iphi() == seed_id.iphi() - 1 ||
((EBDetId)RecHitsInWindow[j].id()).iphi() - 360 == seed_id.iphi() - 1) {
s4s9_[0] += RecHitsInWindow[j].energy();
s4s9_[3] += RecHitsInWindow[j].energy();
} else {
if (((EBDetId)RecHitsInWindow[j].id()).iphi() == seed_id.iphi() + 1 ||
((EBDetId)RecHitsInWindow[j].id()).iphi() - 360 == seed_id.iphi() + 1) {
s4s9_[1] += RecHitsInWindow[j].energy();
s4s9_[2] += RecHitsInWindow[j].energy();
}
}
} else {
if ((((EBDetId)RecHitsInWindow[j].id()).ieta() == seed_id.ieta() + 1 && seed_id.ieta() != -1) ||
(seed_id.ieta() == -1 && (((EBDetId)RecHitsInWindow[j].id()).ieta() == seed_id.ieta() + 2))) {
if (((EBDetId)RecHitsInWindow[j].id()).iphi() == seed_id.iphi() - 1 ||
((EBDetId)RecHitsInWindow[j].id()).iphi() - 360 == seed_id.iphi() - 1) {
s4s9_[3] += RecHitsInWindow[j].energy();
} else {
if (((EBDetId)RecHitsInWindow[j].id()).iphi() == seed_id.iphi()) {
s4s9_[2] += RecHitsInWindow[j].energy();
s4s9_[3] += RecHitsInWindow[j].energy();
} else {
if (((EBDetId)RecHitsInWindow[j].id()).iphi() == seed_id.iphi() + 1 ||
((EBDetId)RecHitsInWindow[j].id()).iphi() - 360 == seed_id.iphi() + 1) {
s4s9_[2] += RecHitsInWindow[j].energy();
}
}
}
} else {
edm::LogWarning("EcalDQM") << " (EBDetId)RecHitsInWindow[j].id()).ieta() "
<< ((EBDetId)RecHitsInWindow[j].id()).ieta() << " seed_id.ieta() "
<< seed_id.ieta() << "\n"
<< " Problem with S4 calculation\n";
return;
}
}
}
}
s4s9Clus.push_back(*std::max_element(s4s9_, s4s9_ + 4) / simple_energy);
nClus++;
if (nClus == MAXCLUS)
return;
} // End loop over seed clusters
// Selection, based on simple clustering
// pi0 candidates
int npi0_s = 0;
std::vector<EBDetId> scXtals;
scXtals.clear();
if (nClus <= 1)
return;
for (Int_t i = 0; i < nClus; i++) {
for (Int_t j = i + 1; j < nClus; j++) {
if (etClus[i] > selePtGammaOne_ && etClus[j] > selePtGammaTwo_ && s4s9Clus[i] > seleS4S9GammaOne_ &&
s4s9Clus[j] > seleS4S9GammaTwo_) {
float theta_0 = 2. * atan(exp(-etaClus[i]));
float theta_1 = 2. * atan(exp(-etaClus[j]));
float p0x = eClus[i] * sin(theta_0) * cos(phiClus[i]);
float p1x = eClus[j] * sin(theta_1) * cos(phiClus[j]);
float p0y = eClus[i] * sin(theta_0) * sin(phiClus[i]);
float p1y = eClus[j] * sin(theta_1) * sin(phiClus[j]);
float p0z = eClus[i] * cos(theta_0);
float p1z = eClus[j] * cos(theta_1);
float pt_pi0 = sqrt((p0x + p1x) * (p0x + p1x) + (p0y + p1y) * (p0y + p1y));
if (pt_pi0 < selePtPi0_)
continue;
float m_inv = sqrt((eClus[i] + eClus[j]) * (eClus[i] + eClus[j]) - (p0x + p1x) * (p0x + p1x) -
(p0y + p1y) * (p0y + p1y) - (p0z + p1z) * (p0z + p1z));
if ((m_inv < seleMinvMaxPi0_) && (m_inv > seleMinvMinPi0_)) {
// New Loop on cluster to measure isolation:
std::vector<int> IsoClus;
IsoClus.clear();
float Iso = 0;
TVector3 pi0vect = TVector3((p0x + p1x), (p0y + p1y), (p0z + p1z));
for (Int_t k = 0; k < nClus; k++) {
if (k == i || k == j)
continue;
TVector3 Clusvect = TVector3(eClus[k] * sin(2. * atan(exp(-etaClus[k]))) * cos(phiClus[k]),
eClus[k] * sin(2. * atan(exp(-etaClus[k]))) * sin(phiClus[k]),
eClus[k] * cos(2. * atan(exp(-etaClus[k]))));
float dretaclpi0 = fabs(etaClus[k] - pi0vect.Eta());
float drclpi0 = Clusvect.DeltaR(pi0vect);
if ((drclpi0 < selePi0BeltDR_) && (dretaclpi0 < selePi0BeltDeta_)) {
Iso = Iso + etClus[k];
IsoClus.push_back(k);
}
}
if (Iso / pt_pi0 < selePi0Iso_) {
mePi0MinvEB.fill(getEcalDQMSetupObjects(), m_inv);
mePi0Pt1EB.fill(getEcalDQMSetupObjects(), etClus[i]);
mePi0Pt2EB.fill(getEcalDQMSetupObjects(), etClus[j]);
mePi0PtEB.fill(getEcalDQMSetupObjects(), pt_pi0);
mePi0IsoEB.fill(getEcalDQMSetupObjects(), Iso / pt_pi0);
npi0_s++;
}
if (npi0_s == MAXPI0S)
return;
} // pi0 inv mass window
} // pt and S4S9 cut
} // cluster "j" index loop
} // cluster "i" index loop
} // runonEBRecHits()
DEFINE_ECALDQM_WORKER(PiZeroTask);
} // namespace ecaldqm
|