1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
#include "DQM/EcalMonitorTasks/interface/TestPulseTask.h"
#include <algorithm>
#include <iomanip>
#include "DataFormats/EcalRawData/interface/EcalDCCHeaderBlock.h"
#include "DataFormats/DetId/interface/DetId.h"
#include "DataFormats/EcalDigi/interface/EcalDataFrame.h"
#include "DQM/EcalCommon/interface/MESetMulti.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
namespace ecaldqm {
TestPulseTask::TestPulseTask() : DQWorkerTask(), gainToME_(), pnGainToME_() {
std::fill_n(enable_, nDCC, false);
std::fill_n(gain_, nDCC, 0);
}
void TestPulseTask::setParams(edm::ParameterSet const& _params) {
std::vector<int> MGPAGains(_params.getUntrackedParameter<std::vector<int> >("MGPAGains"));
std::vector<int> MGPAGainsPN(_params.getUntrackedParameter<std::vector<int> >("MGPAGainsPN"));
MESet::PathReplacements repl;
MESetMulti& amplitude(static_cast<MESetMulti&>(MEs_.at("Amplitude")));
unsigned nG(MGPAGains.size());
for (unsigned iG(0); iG != nG; ++iG) {
int gain(MGPAGains[iG]);
if (gain != 1 && gain != 6 && gain != 12)
throw cms::Exception("InvalidConfiguration") << "MGPA gain";
repl["gain"] = std::to_string(gain);
gainToME_[gain] = amplitude.getIndex(repl);
}
repl.clear();
MESetMulti& pnAmplitude(static_cast<MESetMulti&>(MEs_.at("PNAmplitude")));
unsigned nGPN(MGPAGainsPN.size());
for (unsigned iG(0); iG != nGPN; ++iG) {
int gain(MGPAGainsPN[iG]);
if (gain != 1 && gain != 16)
throw cms::Exception("InvalidConfiguration") << "PN MGPA gain";
repl["pngain"] = std::to_string(gain);
pnGainToME_[gain] = pnAmplitude.getIndex(repl);
}
}
void TestPulseTask::addDependencies(DependencySet& _dependencies) {
_dependencies.push_back(Dependency(kEBTestPulseUncalibRecHit, kEcalRawData));
_dependencies.push_back(Dependency(kEETestPulseUncalibRecHit, kEcalRawData));
}
bool TestPulseTask::filterRunType(short const* _runType) {
bool enable(false);
for (int iFED(0); iFED < nDCC; iFED++) {
if (_runType[iFED] == EcalDCCHeaderBlock::TESTPULSE_MGPA || _runType[iFED] == EcalDCCHeaderBlock::TESTPULSE_GAP) {
enable = true;
enable_[iFED] = true;
} else
enable_[iFED] = false;
}
return enable;
}
void TestPulseTask::runOnRawData(EcalRawDataCollection const& _rawData) {
for (EcalRawDataCollection::const_iterator rItr(_rawData.begin()); rItr != _rawData.end(); ++rItr) {
unsigned iDCC(rItr->id() - 1);
if (!enable_[iDCC]) {
gain_[iDCC] = 0;
continue;
}
switch (rItr->getMgpaGain()) {
case 1:
gain_[iDCC] = 12;
break;
case 2:
gain_[iDCC] = 6;
break;
case 3:
gain_[iDCC] = 1;
break;
default:
break;
}
if (gainToME_.find(gain_[iDCC]) == gainToME_.end())
enable_[iDCC] = false;
}
}
template <typename DigiCollection>
void TestPulseTask::runOnDigis(DigiCollection const& _digis) {
MESet& meOccupancy(MEs_.at("Occupancy"));
MESet& meShape(MEs_.at("Shape"));
unsigned iME(-1);
for (typename DigiCollection::const_iterator digiItr(_digis.begin()); digiItr != _digis.end(); ++digiItr) {
DetId id(digiItr->id());
meOccupancy.fill(getEcalDQMSetupObjects(), id);
int iDCC(dccId(id, GetElectronicsMap()) - 1);
if (!enable_[iDCC])
continue;
// EcalDataFrame is not a derived class of edm::DataFrame, but can take edm::DataFrame in the constructor
EcalDataFrame dataFrame(*digiItr);
if (iME != gainToME_[gain_[iDCC]]) {
iME = gainToME_[gain_[iDCC]];
static_cast<MESetMulti&>(meShape).use(iME);
}
for (int iSample(0); iSample < 10; iSample++)
meShape.fill(getEcalDQMSetupObjects(), id, iSample + 0.5, float(dataFrame.sample(iSample).adc()));
}
}
void TestPulseTask::runOnPnDigis(EcalPnDiodeDigiCollection const& _digis) {
MESet& mePNAmplitude(MEs_.at("PNAmplitude"));
unsigned iME(-1);
for (EcalPnDiodeDigiCollection::const_iterator digiItr(_digis.begin()); digiItr != _digis.end(); ++digiItr) {
EcalPnDiodeDetId const& id(digiItr->id());
int iDCC(dccId(id, GetElectronicsMap()) - 1);
if (!enable_[iDCC])
continue;
int gain(0);
switch (digiItr->sample(0).gainId()) {
case 0:
gain = 1;
break;
case 1:
gain = 16;
break;
default:
continue;
}
if (pnGainToME_.find(gain) == pnGainToME_.end())
continue;
if (iME != pnGainToME_[gain]) {
iME = pnGainToME_[gain];
static_cast<MESetMulti&>(mePNAmplitude).use(iME);
}
float pedestal(0.);
for (int iSample(0); iSample < 4; iSample++)
pedestal += digiItr->sample(iSample).adc();
pedestal /= 4.;
float max(0.);
for (int iSample(0); iSample < 50; iSample++)
if (digiItr->sample(iSample).adc() > max)
max = digiItr->sample(iSample).adc();
double amplitude(max - pedestal);
mePNAmplitude.fill(getEcalDQMSetupObjects(), id, amplitude);
}
}
void TestPulseTask::runOnUncalibRecHits(EcalUncalibratedRecHitCollection const& _uhits) {
MESet& meAmplitude(MEs_.at("Amplitude"));
unsigned iME(-1);
for (EcalUncalibratedRecHitCollection::const_iterator uhitItr(_uhits.begin()); uhitItr != _uhits.end(); ++uhitItr) {
DetId id(uhitItr->id());
int iDCC(dccId(id, GetElectronicsMap()) - 1);
if (!enable_[iDCC])
continue;
if (iME != gainToME_[gain_[iDCC]]) {
iME = gainToME_[gain_[iDCC]];
static_cast<MESetMulti&>(meAmplitude).use(iME);
}
meAmplitude.fill(getEcalDQMSetupObjects(), id, uhitItr->amplitude());
}
}
DEFINE_ECALDQM_WORKER(TestPulseTask);
} // namespace ecaldqm
|