1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
|
#include "DQM/GEM/plugins/GEMEfficiencyAnalyzer.h"
#include "FWCore/Framework/interface/ConsumesCollector.h"
#include "TrackingTools/TransientTrack/interface/TransientTrackBuilder.h"
#include "TrackingTools/Records/interface/TransientTrackRecord.h"
#include "DataFormats/GeometryCommonDetAlgo/interface/ErrorFrameTransformer.h"
#include "DataFormats/GeometrySurface/interface/SimpleDiskBounds.h"
#include "DataFormats/Math/interface/deltaPhi.h"
#include "Geometry/CommonTopologies/interface/StripTopology.h"
#include "Validation/MuonHits/interface/MuonHitHelper.h"
#include "Validation/MuonGEMHits/interface/GEMValidationUtils.h"
GEMEfficiencyAnalyzer::GEMEfficiencyAnalyzer(const edm::ParameterSet& ps)
: GEMDQMEfficiencySourceBase(ps),
kGEMGeometryTokenBeginRun_(esConsumes<edm::Transition::BeginRun>()),
kTransientTrackBuilderToken_(
esConsumes<TransientTrackBuilder, TransientTrackRecord>(edm::ESInputTag("", "TransientTrackBuilder"))),
kGEMRecHitCollectionToken_(consumes<GEMRecHitCollection>(ps.getUntrackedParameter<edm::InputTag>("recHitTag"))),
kMuonViewToken_(consumes<edm::View<reco::Muon> >(ps.getUntrackedParameter<edm::InputTag>("muonTag"))),
kMuonTrackTypeName_(ps.getUntrackedParameter<std::string>("muonTrackType")),
kMuonTrackType_(getMuonTrackType(kMuonTrackTypeName_)),
kMuonName_(TString(ps.getUntrackedParameter<std::string>("muonName"))),
kFolder_(ps.getUntrackedParameter<std::string>("folder")),
kScenario_(getScenarioOption(ps.getUntrackedParameter<std::string>("scenario"))),
kStartingStateType_(getStartingStateType(ps.getUntrackedParameter<std::string>("startingStateType"))),
kMuonSubdetForGEM_({
ps.getUntrackedParameter<std::vector<int> >("muonSubdetForGE0"),
ps.getUntrackedParameter<std::vector<int> >("muonSubdetForGE11"),
ps.getUntrackedParameter<std::vector<int> >("muonSubdetForGE21"),
}),
kCSCForGEM_({
ps.getUntrackedParameter<std::vector<int> >("cscForGE0"),
ps.getUntrackedParameter<std::vector<int> >("cscForGE11"),
ps.getUntrackedParameter<std::vector<int> >("cscForGE21"),
}),
kMuonSegmentMatchDRCut_(static_cast<float>(ps.getUntrackedParameter<double>("muonSegmentMatchDRCut"))),
kMuonPtMinCuts_({
ps.getUntrackedParameter<double>("muonPtMinCutGE0"),
ps.getUntrackedParameter<double>("muonPtMinCutGE11"),
ps.getUntrackedParameter<double>("muonPtMinCutGE21"),
}),
kMuonEtaMinCuts_({
ps.getUntrackedParameter<double>("muonEtaMinCutGE0"),
ps.getUntrackedParameter<double>("muonEtaMinCutGE11"),
ps.getUntrackedParameter<double>("muonEtaMinCutGE21"),
}),
kMuonEtaMaxCuts_({
ps.getUntrackedParameter<double>("muonEtaMaxCutGE0"),
ps.getUntrackedParameter<double>("muonEtaMaxCutGE11"),
ps.getUntrackedParameter<double>("muonEtaMaxCutGE21"),
}),
kPropagationErrorRCut_(static_cast<float>(ps.getUntrackedParameter<double>("propagationErrorRCut"))),
kPropagationErrorPhiCut_(static_cast<float>(ps.getUntrackedParameter<double>("propagationErrorPhiCut"))),
kBoundsErrorScale_(static_cast<float>(ps.getUntrackedParameter<double>("boundsErrorScale"))),
kMatchingMetric_(getMatchingMetric(ps.getUntrackedParameter<std::string>("matchingMetric"))),
kMatchingCut_(static_cast<float>(ps.getUntrackedParameter<double>("matchingCut"))),
kMuonPtBins_(ps.getUntrackedParameter<std::vector<double> >("muonPtBins")),
kMuonEtaNbins_({
ps.getUntrackedParameter<int>("muonEtaNbinsGE0"),
ps.getUntrackedParameter<int>("muonEtaNbinsGE11"),
ps.getUntrackedParameter<int>("muonEtaNbinsGE21"),
}),
kMuonEtaLow_({
ps.getUntrackedParameter<double>("muonEtaLowGE0"),
ps.getUntrackedParameter<double>("muonEtaLowGE11"),
ps.getUntrackedParameter<double>("muonEtaLowGE21"),
}),
kMuonEtaUp_({
ps.getUntrackedParameter<double>("muonEtaUpGE0"),
ps.getUntrackedParameter<double>("muonEtaUpGE11"),
ps.getUntrackedParameter<double>("muonEtaUpGE21"),
}),
kModeDev_(ps.getUntrackedParameter<bool>("modeDev")) {
muon_service_ =
std::make_unique<MuonServiceProxy>(ps.getParameter<edm::ParameterSet>("ServiceParameters"), consumesCollector());
}
GEMEfficiencyAnalyzer::~GEMEfficiencyAnalyzer() {}
void GEMEfficiencyAnalyzer::fillDescriptions(edm::ConfigurationDescriptions& descriptions) {
edm::ParameterSetDescription desc;
// GEMDQMEfficiencySourceBase
desc.addUntracked<edm::InputTag>("ohStatusTag", edm::InputTag("muonGEMDigis", "OHStatus"));
desc.addUntracked<edm::InputTag>("vfatStatusTag", edm::InputTag("muonGEMDigis", "VFATStatus"));
desc.addUntracked<bool>("monitorGE11", true);
desc.addUntracked<bool>("monitorGE21", false);
desc.addUntracked<bool>("monitorGE0", false);
desc.addUntracked<bool>("maskChamberWithError", false);
desc.addUntracked<std::string>("logCategory", "GEMEfficiencyAnalyzer");
// GEMEfficiencyAnalyzer
desc.addUntracked<edm::InputTag>("recHitTag", edm::InputTag("gemRecHits"));
desc.addUntracked<edm::InputTag>("muonTag", edm::InputTag("muons"));
desc.addUntracked<bool>("modeDev", false);
desc.addUntracked<std::string>("muonTrackType", "OuterTrack");
desc.addUntracked<std::string>("muonName", "STA Muon");
desc.addUntracked<std::string>("folder", "GEM/Efficiency/muonSTA");
desc.addUntracked<std::string>("scenario", "pp");
//
desc.addUntracked<std::string>("startingStateType", "OutermostMeasurementState");
desc.addUntracked<double>("muonSegmentMatchDRCut", 5.0f); // for cosmics, in cm, TODO tune
// muon pt cut
desc.addUntracked<double>("muonPtMinCutGE0", 20.0f);
desc.addUntracked<double>("muonPtMinCutGE11", 20.0f);
desc.addUntracked<double>("muonPtMinCutGE21", 20.0f);
// muon abs eta cut for GE11
desc.addUntracked<double>("muonEtaMinCutGE11", 1.5);
desc.addUntracked<double>("muonEtaMaxCutGE11", 2.2);
// muon abs eta cut for GE21
desc.addUntracked<double>("muonEtaMinCutGE21", 1.5);
desc.addUntracked<double>("muonEtaMaxCutGE21", 2.5);
// muon abs eta cut for GE0
desc.addUntracked<double>("muonEtaMinCutGE0", 2.0);
desc.addUntracked<double>("muonEtaMaxCutGE0", 3.0);
// propagation error cuts
desc.addUntracked<double>("propagationErrorRCut", 0.5); // cm
desc.addUntracked<double>("propagationErrorPhiCut", 0.2); // degree
//
desc.addUntracked<double>("boundsErrorScale", -2.0); // TODO tune
// matching
desc.addUntracked<std::string>("matchingMetric", "DeltaPhi");
desc.addUntracked<double>("matchingCut", 0.2); // DeltaPhi for pp, in degree TODO tune
// for MinotorElement
const std::vector<double> default_pt_bins{
0, 5, 10., 20., 30., 40., 50., 60., 70., 80., 90., 100., 110.}; // actually edges
desc.addUntracked<std::vector<double> >("muonPtBins", default_pt_bins);
// GE11
desc.addUntracked<int>("muonEtaNbinsGE11", 9); // bin width = 0.1
desc.addUntracked<double>("muonEtaLowGE11", 1.4);
desc.addUntracked<double>("muonEtaUpGE11", 2.3);
// GE21
desc.addUntracked<int>("muonEtaNbinsGE21", 12); // bin width = 0.1
desc.addUntracked<double>("muonEtaLowGE21", 1.4);
desc.addUntracked<double>("muonEtaUpGE21", 2.6);
// GE0
desc.addUntracked<int>("muonEtaNbinsGE0", 12); // bin width = 0.1
desc.addUntracked<double>("muonEtaLowGE0", 1.9);
desc.addUntracked<double>("muonEtaUpGE0", 3.1);
// MuonSubdetId's are listed in DataFormats/MuonDetId/interface/MuonSubdetId.h
desc.addUntracked<std::vector<int> >("muonSubdetForGE0", {}); // allow all muon subdetectors. TODO optimzie.
desc.addUntracked<std::vector<int> >("muonSubdetForGE11", {});
desc.addUntracked<std::vector<int> >("muonSubdetForGE21", {});
// INFO when muonTrackType is "CombinedTrack" or "OuterTrack"
// https://github.com/cms-sw/cmssw/blob/CMSSW_12_4_0_pre3/DataFormats/MuonDetId/interface/CSCDetId.h#L187-L193
// assumed to be the same area.
desc.addUntracked<std::vector<int> >("cscForGE11", {1, 2}); // ME1a, ME1b
desc.addUntracked<std::vector<int> >("cscForGE21", {}); // all CSCSegments allowed
desc.addUntracked<std::vector<int> >("cscForGE0", {}); // all CSCSegments allowed
// ServiceParameters for MuonServiceProxy
// This will be initialized in the cfi file
edm::ParameterSetDescription service_parameters;
service_parameters.setAllowAnything();
desc.add<edm::ParameterSetDescription>("ServiceParameters", service_parameters);
descriptions.add("gemEfficiencyAnalyzerDefault", desc);
}
// convert a string to enum
GEMEfficiencyAnalyzer::MatchingMetric GEMEfficiencyAnalyzer::getMatchingMetric(const std::string name) {
MatchingMetric method;
if (name == "DeltaPhi") {
method = MatchingMetric::kDeltaPhi;
} else if (name == "RdPhi") {
method = MatchingMetric::kRdPhi;
} else {
edm::LogError(kLogCategory_) << "received an unexpected MatchingMetric: " << name
<< " -> MatchingMetric::kDeltaPhi will be used instead.";
method = MatchingMetric::kDeltaPhi;
}
return method;
}
// convert a string to enum
GEMEfficiencyAnalyzer::StartingStateType GEMEfficiencyAnalyzer::getStartingStateType(const std::string name) {
StartingStateType type;
if (name == "InnermostMeasurementState") {
type = StartingStateType::kInnermostMeasurementState;
} else if (name == "OutermostMeasurementState") {
type = StartingStateType::kOutermostMeasurementState;
} else if (name == "StateOnSurfaceWithCSCSegment") {
type = StartingStateType::kStateOnSurfaceWithCSCSegment;
} else if (name == "AlignmentStyle") {
type = StartingStateType::kAlignmentStyle;
} else {
edm::LogError(kLogCategory_) << "received an unexpected StartingStateType: " << name
<< " -> StartingStateType::kOutermostMeasurementState will be used instead.";
type = StartingStateType::kOutermostMeasurementState;
}
return type;
}
// convert a string to enum
reco::Muon::MuonTrackType GEMEfficiencyAnalyzer::getMuonTrackType(const std::string name) {
reco::Muon::MuonTrackType muon_track_type;
// DO NOT ALLOW TYPO
if (name == "InnerTrack") {
muon_track_type = reco::Muon::MuonTrackType::InnerTrack;
} else if (name == "OuterTrack") {
muon_track_type = reco::Muon::MuonTrackType::OuterTrack;
} else if (name == "CombinedTrack") {
muon_track_type = reco::Muon::MuonTrackType::CombinedTrack;
} else {
edm::LogError(kLogCategory_) << "received an unexpected reco::Muon::MuonTrackType: " << name
<< " --> OuterTrack will be used instead.";
muon_track_type = reco::Muon::MuonTrackType::OuterTrack;
}
return muon_track_type;
}
GEMEfficiencyAnalyzer::ScenarioOption GEMEfficiencyAnalyzer::getScenarioOption(const std::string name) {
ScenarioOption scenario;
if (name == "pp") {
scenario = ScenarioOption::kPP;
} else if (name == "cosmics") {
scenario = ScenarioOption::kCosmics;
} else if (name == "HeavyIons") {
scenario = ScenarioOption::kHeavyIons;
edm::LogInfo(kLogCategory_) << "The scenario is set to \"HeavyIons\""
<< " but there is no strategy dedicated to"
<< "\"HeavyIons\" scenario. The strategy for "
<< "the \"pp\" scenario will be used insteqad.";
} else {
scenario = ScenarioOption::kPP;
edm::LogError(kLogCategory_) << "received an unexpected ScenarioOption: " << name
<< ". Choose from (\"pp\", \"cosmics\", \"HeavyIons\")"
<< " --> pp will be used instead.";
}
return scenario;
}
void GEMEfficiencyAnalyzer::bookHistograms(DQMStore::IBooker& ibooker, edm::Run const&, edm::EventSetup const& setup) {
ibooker.setCurrentFolder(kFolder_);
const GEMGeometry* gem = nullptr;
if (auto handle = setup.getHandle(kGEMGeometryTokenBeginRun_)) {
gem = handle.product();
} else {
edm::LogError(kLogCategory_ + "|bookHistograms") << "failed to get GEMGeometry";
return;
}
for (const GEMStation* station : gem->stations()) {
const int region_id = station->region();
const int station_id = station->station();
if (skipGEMStation(station_id)) {
continue;
}
////////////////////////////////////////////////////////////////////////////
// Region-Station
////////////////////////////////////////////////////////////////////////////
{ // shadowing to reuse short variable names
const GEMDetId key = getReStKey(region_id, station_id);
const TString suffix = GEMUtils::getSuffixName(region_id, station_id);
const TString title = kMuonName_ + GEMUtils::getSuffixTitle(region_id, station_id);
// sources for eff. vs muon pt
TH1F* h_muon_pt = new TH1F("muon_pt" + suffix, title, kMuonPtBins_.size() - 1, &kMuonPtBins_[0]);
me_muon_pt_[key] = ibooker.book1D(h_muon_pt->GetName(), h_muon_pt);
me_muon_pt_[key]->setAxisTitle("Muon p_{T} [GeV]", 1);
me_muon_pt_matched_[key] = bookNumerator1D(ibooker, me_muon_pt_[key]);
// sources for eff. vs muon eta
me_muon_eta_[key] = ibooker.book1D("muon_eta" + suffix,
title,
kMuonEtaNbins_.at(station_id),
kMuonEtaLow_.at(station_id),
kMuonEtaUp_.at(station_id));
me_muon_eta_[key]->setAxisTitle("Muon |#eta|", 1);
me_muon_eta_matched_[key] = bookNumerator1D(ibooker, me_muon_eta_[key]);
// sources for eff. vs muon phi
me_muon_phi_[key] = ibooker.book1D("muon_phi" + suffix, title, 36, -180, 180);
me_muon_phi_[key]->setAxisTitle("Muon #phi [deg]");
me_muon_phi_matched_[key] = bookNumerator1D(ibooker, me_muon_phi_[key]);
if (kModeDev_) {
// without cuts except the fiducial cut
TH1F* h_muon_pt_all = new TH1F("muon_pt_all" + suffix, title, kMuonPtBins_.size() - 1, &kMuonPtBins_[0]);
me_muon_pt_all_[key] = ibooker.book1D(h_muon_pt_all->GetName(), h_muon_pt_all);
me_muon_pt_all_[key]->setAxisTitle("Muon p_{T} [GeV]", 1);
me_muon_pt_all_matched_[key] = bookNumerator1D(ibooker, me_muon_pt_all_[key]);
me_muon_eta_all_[key] = ibooker.book1D("muon_eta_all" + suffix,
title,
kMuonEtaNbins_.at(station_id),
kMuonEtaLow_.at(station_id),
kMuonEtaUp_.at(station_id));
me_muon_eta_all_[key]->setAxisTitle("Muon |#eta|", 1);
me_muon_eta_all_matched_[key] = bookNumerator1D(ibooker, me_muon_eta_all_[key]);
me_muon_charge_[key] = ibooker.book1D("muon_charge" + suffix, title, 3, -1.5, 1.5);
me_muon_charge_[key]->setAxisTitle("Muon charge", 1);
me_muon_charge_matched_[key] = bookNumerator1D(ibooker, me_muon_charge_[key]);
}
} // shadowing
////////////////////////////////////////////////////////////////////////////
// Region - Station - Layer
////////////////////////////////////////////////////////////////////////////
const std::vector<const GEMSuperChamber*> superchamber_vec = station->superChambers();
if (not checkRefs(superchamber_vec)) {
edm::LogError(kLogCategory_) << "got an invalid ptr from GEMStation::superChambers";
return;
}
const std::vector<const GEMChamber*> chamber_vec = superchamber_vec.front()->chambers();
if (not checkRefs(chamber_vec)) {
edm::LogError(kLogCategory_) << "got an invalid ptr from GEMSuperChamber::chambers";
return;
}
// we actually loop over layers
for (const GEMChamber* chamber : chamber_vec) {
const int layer_id = chamber->id().layer();
{ // shadowing
const GEMDetId key = getReStLaKey(chamber->id());
const TString suffix = GEMUtils::getSuffixName(region_id, station_id, layer_id);
const TString title = kMuonName_ + GEMUtils::getSuffixTitle(region_id, station_id, layer_id);
me_chamber_ieta_[key] = bookChamberEtaPartition(ibooker, "chamber_ieta" + suffix, title, station);
me_chamber_ieta_matched_[key] = bookNumerator2D(ibooker, me_chamber_ieta_[key]);
if (kModeDev_) {
me_prop_path_length_[key] = ibooker.book1D("prop_path_length" + suffix, title, 50, 0.0, 5.0);
me_prop_path_length_[key]->setAxisTitle("Propagation path length [cm]", 1);
me_prop_path_length_matched_[key] = bookNumerator1D(ibooker, me_prop_path_length_[key]);
// prop. r error in the global coordinates
me_prop_err_r_[key] = ibooker.book1D("prop_err_r" + suffix, title, 60, 0.0, 3.0);
me_prop_err_r_[key]->setAxisTitle("Propagation global #sigma_{R} [cm]", 1);
me_prop_err_r_matched_[key] = bookNumerator1D(ibooker, me_prop_err_r_[key]);
// prop. r error in the global coordinates
me_prop_err_phi_[key] = ibooker.book1D("prop_err_phi" + suffix, title, 50, 0.0, 1.0);
me_prop_err_phi_[key]->setAxisTitle("Propagation's global #sigma_{#phi} [deg]", 1);
me_prop_err_phi_matched_[key] = bookNumerator1D(ibooker, me_prop_err_phi_[key]);
// cutflow
me_cutflow_[key] = ibooker.book1D("cutflow" + suffix, title, 5, 0.5, 5.5);
me_cutflow_[key]->setBinLabel(1, "All");
me_cutflow_[key]->setBinLabel(2, Form("#sigma_{R} < %.3f cm", kPropagationErrorRCut_));
me_cutflow_[key]->setBinLabel(3, Form("#sigma_{phi} < %.3f deg", kPropagationErrorPhiCut_));
me_cutflow_[key]->setBinLabel(4, Form("p_{T} > %.1f GeV", kMuonPtMinCuts_.at(station_id)));
me_cutflow_[key]->setBinLabel(
5, Form("%.2f < |#eta| < %.2f", kMuonEtaMinCuts_.at(station_id), kMuonEtaMaxCuts_.at(station_id)));
me_cutflow_matched_[key] = bookNumerator1D(ibooker, me_cutflow_.at(key));
}
} // shadowing
} // GEMChamber
////////////////////////////////////////////////////////////////////////////
// Region - Station - iEta
////////////////////////////////////////////////////////////////////////////
const std::vector<const GEMEtaPartition*> eta_partition_vec = chamber_vec.front()->etaPartitions();
if (not checkRefs(eta_partition_vec)) {
edm::LogError(kLogCategory_) << "got an invalid ptr from GEMChamber::etaPartitions";
continue;
}
for (const GEMEtaPartition* eta_partition : eta_partition_vec) {
const int ieta = eta_partition->id().ieta();
{ // shadowing
const GEMDetId key = getReStEtKey(eta_partition->id());
const TString gem_label = TString::Format("GE%d1-%c-E%d", station_id, (region_id > 0 ? 'P' : 'M'), ieta);
const TString suffix = "_" + gem_label;
const TString title = kMuonName_ + " " + gem_label;
// FIXME
const float dphi_up = (kMatchingMetric_ == MatchingMetric::kDeltaPhi) ? kMatchingCut_
: (kScenario_ == ScenarioOption::kCosmics) ? 1.0
: 0.2;
me_residual_phi_[key] = ibooker.book1D("residual_phi" + suffix, title, 41, -dphi_up, dphi_up);
me_residual_phi_[key]->setAxisTitle("Residual in global #phi [deg]", 1);
if (kModeDev_) {
// matching metric
std::string matching_metric_x_title;
if (kMatchingMetric_ == MatchingMetric::kDeltaPhi) {
matching_metric_x_title = "#Delta#phi [deg]";
} else if (kMatchingMetric_ == MatchingMetric::kRdPhi) {
matching_metric_x_title = "R#Delta#phi [cm]";
} else {
matching_metric_x_title = "UNKNOWN METRIC";
}
// matching metrics without any cuts
me_matching_metric_all_[key] =
ibooker.book1D("matching_metric_all" + suffix, title, 101, -3 * kMatchingCut_, 3 * kMatchingCut_);
me_matching_metric_all_[key]->setAxisTitle(matching_metric_x_title, 1);
// matching metrics after cuts
me_matching_metric_[key] =
ibooker.book1D("matching_metric" + suffix, title, 101, -kMatchingCut_, kMatchingCut_);
me_matching_metric_[key]->setAxisTitle(matching_metric_x_title, 1);
// residuals in the global phi for muons (q < 0)
me_residual_phi_muon_[key] =
ibooker.book1D("residual_phi_muon" + suffix, title + " (#mu, q < 0)", 50, -0.5, 0.5);
me_residual_phi_muon_[key]->setAxisTitle("Residual in global #phi [deg]", 1);
me_residual_phi_muon_[key]->setAxisTitle("Number of muons", 2);
// residuals in the global phi for anti-muons (q > 0)
me_residual_phi_antimuon_[key] =
ibooker.book1D("residual_phi_antimuon" + suffix, title + " (#tilde{#mu}, q > 0)", 50, -0.5, 0.5);
me_residual_phi_antimuon_[key]->setAxisTitle("Residual in global #phi [deg]", 1);
me_residual_phi_antimuon_[key]->setAxisTitle("Number of anti-muons", 2);
// residuals in the local x
me_residual_x_[key] = ibooker.book1D("residual_x" + suffix, title, 60, -1.5, 1.5);
me_residual_x_[key]->setAxisTitle("Residual in local X [cm]", 1);
// residuals in the local y
me_residual_y_[key] = ibooker.book1D("residual_y" + suffix, title, 48, -12.0, 12.0);
me_residual_y_[key]->setAxisTitle("Residual in local Y [cm]", 1);
// the strip difference
me_residual_strip_[key] = ibooker.book1D("residual_strip" + suffix, title, 21, -10.0, 10.0);
me_residual_strip_[key]->setAxisTitle("propagation strip - hit strip", 1);
}
} // shadowing
} // GEMEtaPartition
} // GEMStataion
}
// In the `cosmics` scenario, TODO doc
bool GEMEfficiencyAnalyzer::isInsideOut(const reco::Track& track) {
return track.innerPosition().mag2() > track.outerPosition().mag2();
}
//
void GEMEfficiencyAnalyzer::buildGEMLayers(const GEMGeometry* gem) {
std::map<GEMDetId, std::vector<const GEMChamber*> > chambers_per_layer;
for (const GEMStation* station : gem->stations()) {
const int region_id = station->region();
const int station_id = station->station();
const bool is_ge11 = station_id == 1;
if (skipGEMStation(station_id)) {
continue;
}
for (const GEMSuperChamber* superchamber : station->superChambers()) {
// GE11: chamber == 0 for even chambers, chamber == 1 for odd chambers
// GE21 and GE0: chamber == 0 for all chambers
const int chamber_id = is_ge11 ? superchamber->id().chamber() % 2 : 0;
for (const GEMChamber* chamber : superchamber->chambers()) {
const int layer_id = chamber->id().layer();
const GEMDetId key{region_id, 1, station_id, layer_id, chamber_id, 0};
if (chambers_per_layer.find(key) == chambers_per_layer.end()) {
chambers_per_layer.insert({key, std::vector<const GEMChamber*>()});
}
chambers_per_layer.at(key).push_back(chamber);
} // GEMChamber => iterate over layer ids
} // GEMSuperChamber => iterate over chamber ids
} // GEMStation
gem_layers_.reserve(chambers_per_layer.size());
for (auto [gem_id, chambers] : chambers_per_layer) {
// layer position and rotation
const float z_origin = chambers.front()->position().z();
Surface::PositionType position{0.f, 0.f, z_origin};
Surface::RotationType rotation;
// eta partitions should have same R and Z spans.
// XXX is it true?
auto [r_min, r_max] = chambers.front()->surface().rSpan();
auto [z_min, z_max] = chambers.front()->surface().zSpan();
z_min -= z_origin;
z_max -= z_origin;
// the bounds from min and max R and Z in the local coordinates.
SimpleDiskBounds* bounds = new SimpleDiskBounds(r_min, r_max, z_min, z_max);
const Disk::DiskPointer layer = Disk::build(position, rotation, bounds);
gem_layers_.emplace_back(layer, chambers, gem_id);
LogDebug(kLogCategory_) << gem_id
<< Form(" ==> (z_origin, z_min, z_max) = (%.2f, %.2f, %.2f)", z_origin, z_min, z_max);
} // ring
}
// TODO doc
// See https://twiki.cern.ch/twiki/pub/CMS/GEMPPDOfflineDQM/check-muon-direction.pdf
bool GEMEfficiencyAnalyzer::checkPropagationDirection(const reco::Track* track, const GEMLayer& layer) {
const bool is_same_region = track->eta() * layer.id.region() > 0;
bool skip = false;
if (kScenario_ == ScenarioOption::kCosmics) {
float p2_in = track->innerMomentum().mag2();
float p2_out = track->outerMomentum().mag2();
if (isInsideOut(*track))
std::swap(p2_in, p2_out);
const bool is_outgoing = p2_in > p2_out;
skip = (is_outgoing xor is_same_region);
} else {
// beam scenario
skip = not is_same_region;
}
return skip;
}
GEMEfficiencyAnalyzer::StartingState GEMEfficiencyAnalyzer::buildStartingState(
const reco::Muon& muon, const reco::TransientTrack& transient_track, const GEMLayer& gem_layer) {
bool found = false;
TrajectoryStateOnSurface state;
DetId det_id;
switch (kStartingStateType_) {
case StartingStateType::kOutermostMeasurementState: {
std::tie(found, state, det_id) = getOutermostMeasurementState(transient_track);
break;
}
case StartingStateType::kInnermostMeasurementState: {
std::tie(found, state, det_id) = getInnermostMeasurementState(transient_track);
break;
}
case StartingStateType::kStateOnSurfaceWithCSCSegment: {
std::tie(found, state, det_id) = buildStateOnSurfaceWithCSCSegment(muon, transient_track, gem_layer);
break;
}
case StartingStateType::kAlignmentStyle: {
std::tie(found, state, det_id) = buildStartingStateAlignmentStyle(muon, transient_track, gem_layer);
break;
}
default: {
edm::LogError(kLogCategory_) << "got an unexpected StartingStateType";
break;
}
}
found &= state.isValid();
if (found and (det_id.det() == DetId::Detector::Muon)) {
found &= isMuonSubdetAllowed(det_id, gem_layer.id.station());
}
if (found) {
if (MuonHitHelper::isGEM(det_id)) {
const GEMDetId start_id{det_id};
const bool are_same_region = gem_layer.id.region() == start_id.region();
const bool are_same_station = gem_layer.id.station() == start_id.station();
const bool are_same_layer = gem_layer.id.layer() == start_id.layer();
if (are_same_region and are_same_station and are_same_layer) {
LogDebug(kLogCategory_)
<< "The starting detector of the muon propagation is same with the destination. Skip this propagation.";
found = false;
}
} // isGEM
} // found
return std::make_tuple(found, state, det_id);
}
// Use the innermost measurement state as an initial state for the muon propagation.
// NOTE If the analyzer uses global or standalone muons and GEM hits are used in the
// muon reconstruction, the result should be biased.
// In 12_4_0_pre3, GEM hits are used in the pp scenario, but not in the cosmics scenario.
// https://github.com/cms-sw/cmssw/blob/CMSSW_12_4_0_pre3/RecoMuon/StandAloneMuonProducer/python/standAloneMuons_cfi.py#L111-L127
// https://github.com/cms-sw/cmssw/blob/CMSSW_12_4_0_pre3/RecoMuon/CosmicMuonProducer/python/cosmicMuons_cfi.py
GEMEfficiencyAnalyzer::StartingState GEMEfficiencyAnalyzer::getInnermostMeasurementState(
const reco::TransientTrack& transient_track) {
TrajectoryStateOnSurface state;
DetId det_id;
const reco::Track& track = transient_track.track();
// get real innermost state
if (isInsideOut(track)) {
state = transient_track.outermostMeasurementState();
det_id = track.outerDetId();
} else {
state = transient_track.innermostMeasurementState();
det_id = track.innerDetId();
}
return std::make_tuple(true, state, det_id);
}
// Use the outermost measurement state as an initial state for the muon propagation.
GEMEfficiencyAnalyzer::StartingState GEMEfficiencyAnalyzer::getOutermostMeasurementState(
const reco::TransientTrack& transient_track) {
const reco::Track& track = transient_track.track();
TrajectoryStateOnSurface state;
DetId det_id;
// get real innermost state
if (isInsideOut(track)) {
state = transient_track.innermostMeasurementState();
det_id = track.innerDetId();
} else {
state = transient_track.outermostMeasurementState();
det_id = track.outerDetId();
}
return std::make_tuple(true, state, det_id);
}
// Find the nearest CSC segment to the given GEM layer and then use a trajectory
// state on the surface with the segment as an initial state.
// XXX This method results in the residual phi distribution with two peaks
// because the muon and antimuon make different peaks.
GEMEfficiencyAnalyzer::StartingState GEMEfficiencyAnalyzer::buildStateOnSurfaceWithCSCSegment(
const reco::Muon& muon, const reco::TransientTrack& transient_track, const GEMLayer& gem_layer) {
bool found = false;
TrajectoryStateOnSurface state;
DetId det_id;
if (const CSCSegment* csc_segment = findCSCSegment(muon, transient_track, gem_layer)) {
const GeomDet* det = muon_service_->trackingGeometry()->idToDet(csc_segment->cscDetId());
const GlobalPoint global_position = det->toGlobal(csc_segment->localPosition());
found = true;
state = transient_track.stateOnSurface(global_position);
det_id = csc_segment->geographicalId();
}
return std::make_tuple(found, state, det_id);
}
// Find an ME11 segment and the build an initial state using the location and
// direction of the ME11 segment. If the muon has an inner track, the outerP of
// the inner track is used as the momentum magnitude. If not, the momentum
// magnitude is set to 1 GeV.
// https://github.com/gem-sw/alignment/blob/713e8fa/GEMCSCBendingAnalyzer/MuonAnalyser/plugins/analyser.cc#L435-L446
GEMEfficiencyAnalyzer::StartingState GEMEfficiencyAnalyzer::buildStartingStateAlignmentStyle(
const reco::Muon& muon, const reco::TransientTrack& transient_track, const GEMLayer& gem_layer) {
bool found = false;
TrajectoryStateOnSurface state;
DetId det_id;
if (const CSCSegment* csc_segment = findCSCSegment(muon, transient_track, gem_layer)) {
found = true;
det_id = csc_segment->geographicalId();
// position
const LocalPoint position = csc_segment->localPosition();
// momentum
const reco::TrackRef inner_track = muon.innerTrack();
const float momentum_magnitude = inner_track.isNonnull() ? inner_track.get()->outerP() : 1.0f;
const LocalVector momentum = momentum_magnitude * csc_segment->localDirection();
// trajectory parameter
const LocalTrajectoryParameters trajectory_parameters{position, momentum, muon.charge()};
// trajectory error
const LocalTrajectoryError trajectory_error =
asSMatrix<5>(csc_segment->parametersError().similarityT(csc_segment->projectionMatrix()));
// surface
const Plane& surface = muon_service_->trackingGeometry()->idToDet(det_id)->surface();
state =
TrajectoryStateOnSurface{trajectory_parameters, trajectory_error, surface, &*muon_service_->magneticField()};
}
return std::make_tuple(found, state, det_id);
}
//
// for beam scenario
const CSCSegment* GEMEfficiencyAnalyzer::findCSCSegmentBeam(const reco::TransientTrack& transient_track,
const GEMLayer& gem_layer) {
const CSCSegment* best_csc_segment = nullptr;
double min_z_distance = std::numeric_limits<double>::infinity(); // in cm
for (trackingRecHit_iterator tracking_rechit_iter = transient_track.recHitsBegin();
tracking_rechit_iter != transient_track.recHitsEnd();
tracking_rechit_iter++) {
const TrackingRecHit* tracking_rechit = *tracking_rechit_iter;
if (not tracking_rechit->isValid()) {
LogDebug(kLogCategory_) << "got an invalid trackingRecHit_iterator from transient_track. skip it.";
continue;
}
const DetId det_id = tracking_rechit->geographicalId();
if (not MuonHitHelper::isCSC(det_id)) {
continue;
}
if (tracking_rechit->dimension() != kCSCSegmentDimension_) {
continue;
}
const CSCDetId csc_id{det_id};
if (not isCSCAllowed(csc_id, gem_layer.id.station())) {
continue;
}
if (auto csc_segment = dynamic_cast<const CSCSegment*>(tracking_rechit)) {
const GeomDet* det = muon_service_->trackingGeometry()->idToDet(csc_id);
if (det == nullptr) {
edm::LogError(kLogCategory_) << "GlobalTrackingGeometry::idToDet returns nullptr; CSCDetId=" << csc_id;
continue;
}
const GlobalPoint global_position = det->toGlobal(csc_segment->localPosition());
const float z_distance = std::abs(gem_layer.disk->localZclamped(global_position));
if (z_distance < min_z_distance) {
best_csc_segment = csc_segment;
min_z_distance = z_distance;
}
} else {
edm::LogError(kLogCategory_)
<< "failed to perform the conversion from `const TrackingRechit*` to `const CSCSegment*`";
}
} // trackingRecHit_iterator
return best_csc_segment;
}
const CSCSegment* GEMEfficiencyAnalyzer::findCSCSegmentCosmics(const reco::Muon& muon, const GEMLayer& gem_layer) {
const CSCSegment* best_csc_segment = nullptr;
for (const reco::MuonChamberMatch& chamber_match : muon.matches()) {
if (not MuonHitHelper::isCSC(chamber_match.id)) {
continue;
}
const CSCDetId csc_id{chamber_match.id};
if (not isCSCAllowed(csc_id, gem_layer.id.station())) {
continue;
}
const float x_track = chamber_match.x;
const float y_track = chamber_match.y;
for (const reco::MuonSegmentMatch& segment_match : chamber_match.segmentMatches) {
if (not segment_match.isMask(reco::MuonSegmentMatch::BestInStationByDR)) {
continue;
}
const float dr = std::hypot(x_track - segment_match.x, y_track - segment_match.y);
std::cout << kLogCategory_ << ": dr=" << dr << std::endl;
if (dr > kMuonSegmentMatchDRCut_) {
LogDebug(kLogCategory_) << "too large dR(muon, segment)";
break;
}
if (segment_match.cscSegmentRef.isNonnull()) {
best_csc_segment = segment_match.cscSegmentRef.get();
}
} // MuonSegmentMatch
} // MuonChamberMatch
return best_csc_segment;
}
// just thin wrapper
const CSCSegment* GEMEfficiencyAnalyzer::findCSCSegment(const reco::Muon& muon,
const reco::TransientTrack& transient_track,
const GEMLayer& gem_layer) {
if (kScenario_ == ScenarioOption::kCosmics) {
return findCSCSegmentCosmics(muon, gem_layer);
} else {
// pp or HI
return findCSCSegmentBeam(transient_track, gem_layer);
}
}
bool GEMEfficiencyAnalyzer::isMuonSubdetAllowed(const DetId& det_id, const int gem_station) {
if ((gem_station < 0) or (gem_station > 2)) {
edm::LogError(kLogCategory_) << "got unexpected gem station " << gem_station;
return false;
}
if (det_id.det() != DetId::Detector::Muon) {
edm::LogError(kLogCategory_) << Form(
"(Detector, Subdetector) = (%d, %d)", static_cast<int>(det_id.det()), det_id.subdetId());
return false;
}
const std::vector<int> allowed = kMuonSubdetForGEM_.at(gem_station);
return allowed.empty() or (std::find(allowed.begin(), allowed.end(), det_id.subdetId()) != allowed.end());
}
// Returns a bool value indicating whether or not the CSC detector can be used
// as a start detector for a given GEM station.
// See https://github.com/cms-sw/cmssw/blob/CMSSW_12_4_0_pre3/DataFormats/MuonDetId/interface/CSCDetId.h#L187-L193
// This method is used when using `buildStateOnSurfaceWithCSCSegment` or
// `buildStartingStateAlignmentStyle`
bool GEMEfficiencyAnalyzer::isCSCAllowed(const CSCDetId& csc_id, const int gem_station) {
if ((gem_station < 0) or (gem_station > 2)) {
edm::LogError(kLogCategory_) << "got unexpected gem station " << gem_station;
return false;
}
// unsigned short to int
const int csc_chamber_type = static_cast<int>(csc_id.iChamberType());
const std::vector<int> allowed = kCSCForGEM_.at(gem_station);
return allowed.empty() or (std::find(allowed.begin(), allowed.end(), csc_chamber_type) != allowed.end());
}
bool GEMEfficiencyAnalyzer::checkBounds(const Plane& plane, const GlobalPoint& global_point) {
const LocalPoint local_point = plane.toLocal(global_point);
const LocalPoint local_point_2d(local_point.x(), local_point.y(), 0.0f);
return plane.bounds().inside(local_point_2d);
}
// TODO comment on the scale
// https://github.com/cms-sw/cmssw/blob/CMSSW_12_0_0_pre3/DataFormats/GeometrySurface/src/SimpleDiskBounds.cc#L20-L35
bool GEMEfficiencyAnalyzer::checkBounds(const Plane& plane,
const GlobalPoint& global_point,
const GlobalError& global_error,
const float scale) {
const LocalPoint local_point = plane.toLocal(global_point);
const LocalError local_error = ErrorFrameTransformer::transform(global_error, plane);
const LocalPoint local_point_2d{local_point.x(), local_point.y(), 0.0f};
return plane.bounds().inside(local_point_2d, local_error, scale);
}
const GEMEtaPartition* GEMEfficiencyAnalyzer::findEtaPartition(const GlobalPoint& global_point,
const GlobalError& global_error,
const std::vector<const GEMChamber*>& chamber_vector) {
const GEMEtaPartition* bound = nullptr;
for (const GEMChamber* chamber : chamber_vector) {
if (not checkBounds(chamber->surface(), global_point, global_error, kBoundsErrorScale_)) {
continue;
}
for (const GEMEtaPartition* eta_partition : chamber->etaPartitions()) {
if (checkBounds(eta_partition->surface(), global_point, global_error, kBoundsErrorScale_)) {
bound = eta_partition;
break;
}
} // GEMEtaPartition
} // GEMChamber
return bound;
}
// Borrowed from https://github.com/gem-sw/alignment/blob/713e8fa/GEMCSCBendingAnalyzer/MuonAnalyser/plugins/analyser.cc#L321-L327
float GEMEfficiencyAnalyzer::computeRdPhi(const GlobalPoint& prop_global_pos,
const LocalPoint& hit_local_pos,
const GEMEtaPartition* eta_partition) {
const StripTopology& topology = eta_partition->specificTopology();
const LocalPoint prop_local_pos = eta_partition->toLocal(prop_global_pos);
const float dx = prop_local_pos.x() - hit_local_pos.x();
const float dy = prop_local_pos.y() - hit_local_pos.y();
const float hit_strip = eta_partition->strip(hit_local_pos);
const float hit_phi = topology.stripAngle(hit_strip);
const float rdphi = std::cos(hit_phi) * dx - std::sin(hit_phi) * dy;
return rdphi;
}
// Returns a global delta phi between a propagated muon and a reconstructed hit.
float GEMEfficiencyAnalyzer::computeDeltaPhi(const GlobalPoint& prop_global_pos,
const LocalPoint& hit_local_pos,
const GEMEtaPartition* eta_partition) {
const GlobalPoint hit_global_pos = eta_partition->toGlobal(hit_local_pos);
const float dphi = Geom::convertRadToDeg(prop_global_pos.phi() - hit_global_pos.phi());
return dphi;
}
// a thin wrapper to hide a messy conditional statement
float GEMEfficiencyAnalyzer::computeMatchingMetric(const GlobalPoint& prop_global_pos,
const LocalPoint& hit_local_pos,
const GEMEtaPartition* eta_partition) {
float metric;
switch (kMatchingMetric_) {
case MatchingMetric::kDeltaPhi: {
metric = computeDeltaPhi(prop_global_pos, hit_local_pos, eta_partition);
break;
}
case MatchingMetric::kRdPhi: {
metric = computeRdPhi(prop_global_pos, hit_local_pos, eta_partition);
break;
}
default: {
edm::LogError(kLogCategory_) << "unknown MatchingMetric."; // TODO
metric = std::numeric_limits<float>::infinity();
}
}
return metric;
}
// This method finds the closest hit to a propagated muon in the eta partition
// with that propagated muon. Adjacent eta partitions are excluded from the area
// of interst to avoid ambiguity in defining the detection efficiency of each
// eta partition.
std::pair<const GEMRecHit*, float> GEMEfficiencyAnalyzer::findClosestHit(const GlobalPoint& prop_global_pos,
const GEMRecHitCollection::range& rechit_range,
const GEMEtaPartition* eta_partition) {
const GEMRecHit* closest_hit = nullptr;
float min_metric = std::numeric_limits<float>::infinity();
for (auto hit = rechit_range.first; hit != rechit_range.second; ++hit) {
const LocalPoint hit_local_pos = hit->localPosition();
const float metric = computeMatchingMetric(prop_global_pos, hit_local_pos, eta_partition);
if (std::abs(metric) < std::abs(min_metric)) {
min_metric = metric;
closest_hit = &(*hit);
}
}
return std::make_pair(closest_hit, min_metric);
}
void GEMEfficiencyAnalyzer::dqmBeginRun(edm::Run const&, edm::EventSetup const& setup) {
const GEMGeometry* gem = nullptr;
if (auto handle = setup.getHandle(kGEMGeometryTokenBeginRun_)) {
gem = handle.product();
} else {
edm::LogError(kLogCategory_ + "|dqmBeginRun") << "failed to get GEMGeometry";
return;
}
buildGEMLayers(gem);
}
void GEMEfficiencyAnalyzer::analyze(const edm::Event& event, const edm::EventSetup& setup) {
//////////////////////////////////////////////////////////////////////////////
// get data from Event
//////////////////////////////////////////////////////////////////////////////
const GEMRecHitCollection* rechit_collection = nullptr;
if (auto handle = event.getHandle(kGEMRecHitCollectionToken_)) {
rechit_collection = handle.product();
} else {
edm::LogError(kLogCategory_) << "failed to get GEMRecHitCollection";
return;
}
const edm::View<reco::Muon>* muon_view = nullptr;
if (auto handle = event.getHandle(kMuonViewToken_)) {
muon_view = handle.product();
} else {
edm::LogError(kLogCategory_) << "failed to get View<Muon>";
return;
}
const GEMOHStatusCollection* oh_status_collection = nullptr;
const GEMVFATStatusCollection* vfat_status_collection = nullptr;
if (kMaskChamberWithError_) {
if (auto handle = event.getHandle(kGEMOHStatusCollectionToken_)) {
oh_status_collection = handle.product();
} else {
edm::LogError(kLogCategory_) << "failed to get OHVFATStatusCollection";
return;
}
if (auto handle = event.getHandle(kGEMVFATStatusCollectionToken_)) {
vfat_status_collection = handle.product();
} else {
edm::LogError(kLogCategory_) << "failed to get GEMVFATStatusCollection";
return;
}
}
//////////////////////////////////////////////////////////////////////////////
// get data from EventSetup
//////////////////////////////////////////////////////////////////////////////
const TransientTrackBuilder* transient_track_builder = nullptr;
if (auto handle = setup.getHandle(kTransientTrackBuilderToken_)) {
transient_track_builder = handle.product();
} else {
edm::LogError(kLogCategory_) << "failed to get TransientTrackBuilder";
return;
}
//////////////////////////////////////////////////////////////////////////////
// get more data from EventSetup using MuonServiceProxy
//////////////////////////////////////////////////////////////////////////////
muon_service_->update(setup);
// TODO StraightLinePropagator if B < epsilon else SteppingHelixPropagatorAny
const Propagator* propagator = nullptr;
if (auto handle = muon_service_->propagator("SteppingHelixPropagatorAny")) {
propagator = handle.product();
} else {
edm::LogError(kLogCategory_) << "failed to get Propagator";
return;
}
//////////////////////////////////////////////////////////////////////////////
// Main loop
//////////////////////////////////////////////////////////////////////////////
for (const reco::Muon& muon : *muon_view) {
const reco::Track* track = muon.muonTrack(kMuonTrackType_).get();
if (track == nullptr) {
LogDebug(kLogCategory_) << "failed to get a " << kMuonTrackTypeName_;
continue;
}
const reco::TransientTrack transient_track = transient_track_builder->build(track);
if (not transient_track.isValid()) {
edm::LogError(kLogCategory_) << "failed to build TransientTrack";
continue;
}
for (const GEMLayer& layer : gem_layers_) {
if (checkPropagationDirection(track, layer)) {
LogDebug(kLogCategory_) << "bad flight path. skip this propagation.";
continue;
}
const auto [found_start_state, start_state, start_id] = buildStartingState(muon, transient_track, layer);
if (not found_start_state) {
LogDebug(kLogCategory_) << "propagation starting state not found";
continue;
}
// the trajectory state on the destination surface
const auto [propagated_state, prop_path_length] = propagator->propagateWithPath(start_state, *(layer.disk));
if (not propagated_state.isValid()) {
LogDebug(kLogCategory_) << "failed to propagate a muon from "
<< Form("(Detector, Subdetector) = (%d, %d)",
static_cast<int>(start_id.det()),
start_id.subdetId())
<< " to " << layer.id << ". The path length is " << prop_path_length;
continue;
}
const GlobalPoint prop_global_pos = propagated_state.globalPosition();
const GlobalError& prop_global_err =
ErrorFrameTransformer::transform(propagated_state.localError().positionError(), *layer.disk);
if (not checkBounds(*layer.disk, prop_global_pos, prop_global_err, kBoundsErrorScale_)) {
LogDebug(kLogCategory_) << "failed to pass checkBounds";
continue;
}
const GEMEtaPartition* eta_partition = findEtaPartition(prop_global_pos, prop_global_err, layer.chambers);
if (eta_partition == nullptr) {
LogDebug(kLogCategory_) << "failed to find an eta partition";
continue;
}
const GEMDetId gem_id = eta_partition->id();
if (kMaskChamberWithError_) {
const bool has_error = maskChamberWithError(gem_id.chamberId(), oh_status_collection, vfat_status_collection);
if (has_error) {
LogDebug(kLogCategory_) << gem_id.chamberId() << " has an erorr. Skip this propagation.";
continue;
}
}
//////////////////////////////////////////////////////////////////////////
//
//////////////////////////////////////////////////////////////////////////
const GEMDetId rs_key = getReStKey(gem_id); // region-station
const GEMDetId rsl_key = getReStLaKey(gem_id); // region-station-layer
const GEMDetId rse_key = getReStEtKey(gem_id); // region-station-ieta
const int station_id = gem_id.station();
const int chamber_id = gem_id.chamber();
const int ieta = gem_id.ieta();
const double muon_pt = muon.pt();
const double muon_eta = std::fabs(muon.eta());
const double muon_phi = Geom::convertRadToDeg(muon.phi());
const double prop_global_err_r = std::sqrt(prop_global_err.rerr(prop_global_pos));
const double prop_global_err_phi = Geom::convertRadToDeg(std::sqrt(prop_global_err.phierr(prop_global_pos)));
// cuts
const bool passed_prop_err_r_cut = (prop_global_err_r < kPropagationErrorRCut_);
const bool passed_prop_err_phi_cut = (prop_global_err_phi < kPropagationErrorPhiCut_);
const bool passed_pt_cut = muon_pt > kMuonPtMinCuts_.at(station_id);
const bool passed_eta_cut =
(muon_eta > kMuonEtaMinCuts_.at(station_id)) and (muon_eta < kMuonEtaMaxCuts_.at(station_id));
const bool passed_prop_err_cuts = passed_prop_err_r_cut and passed_prop_err_phi_cut;
const bool passed_all_cuts = passed_prop_err_cuts and passed_pt_cut and passed_eta_cut;
const int cutflow_last = not kModeDev_ ? 0
: not passed_prop_err_r_cut ? 1
: not passed_prop_err_phi_cut ? 2
: not passed_pt_cut ? 3
: not passed_eta_cut ? 4
: 5;
//////////////////////////////////////////////////////////////////////////
// Fill denominators
//////////////////////////////////////////////////////////////////////////
if (passed_eta_cut and passed_prop_err_cuts) {
fillMEWithinLimits(me_muon_pt_, rs_key, muon_pt);
}
if (passed_pt_cut and passed_prop_err_cuts) {
fillMEWithinLimits(me_muon_eta_, rs_key, muon_eta);
}
if (passed_all_cuts) {
fillME(me_chamber_ieta_, rsl_key, chamber_id, ieta);
fillME(me_muon_phi_, rs_key, muon_phi);
}
if (kModeDev_) {
fillMEWithinLimits(me_prop_path_length_, rsl_key, prop_path_length);
fillMEWithinLimits(me_prop_err_r_, rsl_key, prop_global_err_r);
fillMEWithinLimits(me_prop_err_phi_, rsl_key, prop_global_err_phi);
fillMEWithinLimits(me_muon_pt_all_, rs_key, muon_pt);
fillMEWithinLimits(me_muon_eta_all_, rs_key, muon_eta);
fillME(me_muon_charge_, rs_key, muon.charge());
for (int bin = 1; bin <= cutflow_last; bin++) {
fillME(me_cutflow_, rsl_key, bin);
}
} // dev mode
//////////////////////////////////////////////////////////////////////////
// Find a closet hit
//////////////////////////////////////////////////////////////////////////
const auto [hit, matching_metric] =
findClosestHit(prop_global_pos, rechit_collection->get(gem_id), eta_partition);
if (hit == nullptr) {
LogDebug(kLogCategory_) << "hit not found";
continue;
}
if (kModeDev_) {
fillMEWithinLimits(me_matching_metric_all_, rse_key, matching_metric);
}
if (std::abs(matching_metric) > kMatchingCut_) {
LogDebug(kLogCategory_) << "failed to pass the residual rphi cut";
continue;
}
//////////////////////////////////////////////////////////////////////////
// Fill numerators
//////////////////////////////////////////////////////////////////////////
if (passed_eta_cut and passed_prop_err_cuts) {
fillMEWithinLimits(me_muon_pt_matched_, rs_key, muon_pt);
}
if (passed_pt_cut and passed_prop_err_cuts) {
fillMEWithinLimits(me_muon_eta_matched_, rs_key, muon_eta);
}
if (passed_all_cuts) {
fillME(me_chamber_ieta_matched_, rsl_key, chamber_id, ieta);
fillME(me_muon_phi_matched_, rs_key, muon_phi);
}
if (kModeDev_) {
fillMEWithinLimits(me_prop_path_length_matched_, rsl_key, prop_path_length);
fillMEWithinLimits(me_prop_err_r_matched_, rsl_key, prop_global_err_r);
fillMEWithinLimits(me_prop_err_phi_matched_, rsl_key, prop_global_err_phi);
fillMEWithinLimits(me_muon_pt_all_matched_, rs_key, muon_pt);
fillMEWithinLimits(me_muon_eta_all_matched_, rs_key, muon_eta);
fillME(me_muon_charge_matched_, rs_key, muon.charge());
if (passed_all_cuts) {
for (int bin = 1; bin <= cutflow_last; bin++) {
fillME(me_cutflow_matched_, rsl_key, bin);
}
}
}
//////////////////////////////////////////////////////////////////////////
// Fill resolutions
//////////////////////////////////////////////////////////////////////////
if (passed_all_cuts) {
const LocalPoint hit_local_pos = hit->localPosition();
const GlobalPoint& hit_global_pos = eta_partition->toGlobal(hit_local_pos);
const float residual_phi = Geom::convertRadToDeg(prop_global_pos.phi() - hit_global_pos.phi());
fillMEWithinLimits(me_residual_phi_, rse_key, residual_phi);
if (kModeDev_) {
const LocalPoint prop_local_pos = eta_partition->toLocal(prop_global_pos);
const StripTopology& topology = eta_partition->specificTopology();
const float residual_x = prop_local_pos.x() - hit_local_pos.x();
const float residual_y = prop_local_pos.y() - hit_local_pos.y();
const float residual_strip = topology.strip(prop_local_pos) - topology.strip(hit_local_pos);
fillMEWithinLimits(me_matching_metric_, rse_key, matching_metric);
fillMEWithinLimits(me_residual_x_, rse_key, residual_x);
fillMEWithinLimits(me_residual_y_, rse_key, residual_y);
fillMEWithinLimits(me_residual_strip_, rse_key, residual_strip);
if (muon.charge() < 0) {
fillMEWithinLimits(me_residual_phi_muon_, rse_key, residual_phi);
} else {
fillMEWithinLimits(me_residual_phi_antimuon_, rse_key, residual_phi);
}
} // kModeDev_
} // passed_all_cuts
} // destination
} // Muon
} // analyze
|