Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#include "DQM/HcalCommon/interface/DQTask.h"

#include "FWCore/Utilities/interface/ESInputTag.h"
#include "FWCore/Utilities/interface/Transition.h"

namespace hcaldqm {
  using namespace constants;
  DQTask::DQTask(edm::ParameterSet const &ps)
      : DQModule(ps),
        _cEvsTotal(_name, "EventsTotal"),
        _cEvsPerLS(_name, "EventsPerLS"),
        _cRunKeyVal(_name, "RunKeyValue"),
        _cRunKeyName(_name, "RunKeyName"),
        _cProcessingTypeName(_name, "ProcessingType"),
        _procLSs(0),
        hcalDbServiceToken_(esConsumes<HcalDbService, HcalDbRecord, edm::Transition::BeginRun>()),
        runInfoToken_(esConsumes<RunInfo, RunInfoRcd, edm::Transition::BeginRun>()),
        hcalChannelQualityToken_(
            esConsumes<HcalChannelQuality, HcalChannelQualityRcd, edm::Transition::BeginLuminosityBlock>(
                edm::ESInputTag("", "withTopo"))) {
    //	tags and Tokens
    _tagRaw = ps.getUntrackedParameter<edm::InputTag>("tagRaw", edm::InputTag("rawDataCollector"));
    _tokRaw = consumes<FEDRawDataCollection>(_tagRaw);
  }

  void DQTask::fillPSetDescription(edm::ParameterSetDescription &desc) {
    //from class inheritance
    hcaldqm::DQModule::fillPSetDescription(desc);

    desc.addUntracked<edm::InputTag>("tagRaw", edm::InputTag("rawDataCollector"));
  }

  /*
 *	By design, all the sources will ahve this function inherited and will
 *	never override.
 */
  void DQTask::analyze(edm::Event const &e, edm::EventSetup const &es) {
    this->_resetMonitors(fEvent);
    _logger.debug(_name + " processing");
    if (!this->_isApplicable(e))
      return;

    _evsTotal++;
    _cEvsTotal.fill(_evsTotal);

    auto lumiCache = luminosityBlockCache(e.getLuminosityBlock().index());
    lumiCache->EvtCntLS++;
    _evsPerLS = lumiCache->EvtCntLS;
    _cEvsPerLS.fill(_evsPerLS);

    this->_process(e, es);
  }

  void DQTask::bookHistograms(DQMStore::IBooker &ib, edm::Run const &r, edm::EventSetup const &es) {
    //	initialize some containers to be used by all modules
    _xQuality.initialize(hashfunctions::fDChannel);

    //	get the run info FEDs - FEDs registered at cDAQ
    //	and determine if there are any HCAL FEDs in.
    //	push them as ElectronicsIds into the vector
    if (auto runInfoRec = es.tryToGet<RunInfoRcd>()) {
      const RunInfo &runInfo = es.getData(runInfoToken_);
      std::vector<int> vfeds = runInfo.m_fed_in;
      for (std::vector<int>::const_iterator it = vfeds.begin(); it != vfeds.end(); ++it) {
        if (*it >= constants::FED_VME_MIN && *it <= FED_VME_MAX)
          _vcdaqEids.push_back(
              HcalElectronicsId(constants::FIBERCH_MIN, constants::FIBER_VME_MIN, SPIGOT_MIN, (*it) - FED_VME_MIN)
                  .rawId());
        else if (*it >= constants::FED_uTCA_MIN && *it <= FEDNumbering::MAXHCALuTCAFEDID) {
          std::pair<uint16_t, uint16_t> cspair = utilities::fed2crate(*it);
          _vcdaqEids.push_back(
              HcalElectronicsId(cspair.first, cspair.second, FIBER_uTCA_MIN1, FIBERCH_MIN, false).rawId());
        }
      }
    }

    //	book some base guys
    _cEvsTotal.book(ib, _subsystem);
    _cEvsPerLS.book(ib, _subsystem);
    _cRunKeyVal.book(ib, _subsystem);
    _cRunKeyName.book(ib, _subsystem);
    _cProcessingTypeName.book(ib, _subsystem);

    //	fill what you can now
    _cRunKeyVal.fill(_runkeyVal);
    _cRunKeyName.fill(_runkeyName);
    _cProcessingTypeName.fill(pTypeNames[_ptype]);

    // Load conditions and emap
    _dbService = es.getHandle(hcalDbServiceToken_);
    _emap = _dbService->getHcalMapping();
  }

  void DQTask::dqmBeginRun(edm::Run const &, edm::EventSetup const &) {
    this->_resetMonitors(fEvent);
    this->_resetMonitors(f1LS);
    this->_resetMonitors(f10LS);
    this->_resetMonitors(f50LS);
    this->_resetMonitors(f100LS);
  }

  std::shared_ptr<hcaldqm::Cache> DQTask::globalBeginLuminosityBlock(edm::LuminosityBlock const &lb,
                                                                     edm::EventSetup const &es) const {
    auto d = std::make_shared<hcaldqm::Cache>();
    d->currentLS = lb.luminosityBlock();
    d->EvtCntLS = 0;

    /*   //// these resets were not useful anymore
    this->_resetMonitors(f1LS);
    if (_procLSs % 10 == 0)
      this->_resetMonitors(f10LS);
    if (_procLSs % 50 == 0)
      this->_resetMonitors(f50LS);
    if (_procLSs % 100 == 0)
      this->_resetMonitors(f100LS);
*/

    //	get the Channel Quality Status for all the channels
    d->xQuality.initialize(hashfunctions::fDChannel);
    d->xQuality.reset();
    const HcalChannelQuality &cq = es.getData(hcalChannelQualityToken_);
    std::vector<DetId> detids = cq.getAllChannels();
    for (std::vector<DetId>::const_iterator it = detids.begin(); it != detids.end(); ++it) {
      //	if unknown skip
      if (HcalGenericDetId(*it).genericSubdet() == HcalGenericDetId::HcalGenUnknown)
        continue;

      if (HcalGenericDetId(*it).isHcalDetId()) {
        HcalDetId did(*it);
        uint32_t mask = (cq.getValues(did))->getValue();
        if (mask != 0) {
          d->xQuality.push(did, mask);
        }
      }
    }
    return d;
  }

  void DQTask::globalEndLuminosityBlock(edm::LuminosityBlock const &, edm::EventSetup const &) { _procLSs++; }

  void DQTask::_resetMonitors(UpdateFreq uf) {
    //	reset per event
    switch (uf) {
      case fEvent:
        break;
      case f1LS:
        _evsPerLS = 0;
        break;
      case f10LS:
        break;
      case f50LS:
        break;
      case f100LS:
        break;
      default:
        break;
    }
  }

  int DQTask::_getCalibType(edm::Event const &e) {
    int calibType = 0;

    edm::Handle<FEDRawDataCollection> craw;
    if (!e.getByToken(_tokRaw, craw))
      _logger.dqmthrow("Collection FEDRawDataCollection isn't available " + _tagRaw.label() + " " + _tagRaw.instance());

    int badFEDs = 0;
    std::vector<int> types(8, 0);
    for (int i = FED_VME_MIN; i <= FED_VME_MAX; i++) {
      FEDRawData const &fd = craw->FEDData(i);
      if (fd.size() < 24) {
        badFEDs++;
        continue;
      }
      int cval = (int)((HcalDCCHeader const *)(fd.data()))->getCalibType();
      if (cval > 7)
        _logger.warn("Unexpected Calib Type in FED " + std::to_string(i));
      types[cval]++;
    }
    for (int i = FED_uTCA_MIN; i <= FED_uTCA_MAX; i++) {
      FEDRawData const &fd = craw->FEDData(i);
      if (fd.size() < 24) {
        badFEDs++;
        continue;
      }
      int cval = (int)((HcalDCCHeader const *)(fd.data()))->getCalibType();
      if (cval > 7)
        _logger.warn("Unexpected Calib Type in FED " + std::to_string(i));
      types[cval]++;
    }

    int max = 0;
    for (unsigned int ic = 0; ic < 8; ic++) {
      if (types[ic] > max) {
        max = types[ic];
        calibType = ic;
      }
    }
    if (max != (FED_VME_NUM + (FED_uTCA_MAX - FED_uTCA_MIN + 1) - badFEDs))
      _logger.warn("Conflicting Calibration Types found. Assigning " + std::to_string(calibType));

    return calibType;
  }
}  // namespace hcaldqm