Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
#include "DQM/HcalCommon/interface/Utilities.h"
#include <utility>

namespace hcaldqm {
  using namespace constants;
  namespace utilities {
    /*
 *	Useful Detector Functions. For Fast Detector Validity Check
 */
    std::pair<uint16_t, uint16_t> fed2crate(int fed) {
      //  uTCA Crate is split in half
      uint16_t slot = 0;
      if (fed <= FED_VME_MAX) {
        slot = fed % 2 == 0 ? SLOT_uTCA_MIN : SLOT_uTCA_MIN + 6;
      } else if ((fed >= 1100 && fed <= 1117) || (fed >= 1140 && fed <= 1148)) {
        slot = fed >= 1140 ? SLOT_uTCA_MIN + 8 : fed % 2 == 0 ? SLOT_uTCA_MIN : SLOT_uTCA_MIN + 4;
      } else {
        slot = fed % 2 == 0 ? SLOT_uTCA_MIN : SLOT_uTCA_MIN + 6;
      }
      std::pair<uint16_t, uint16_t> crate_slot = std::make_pair<uint16_t, uint16_t>(0, 0);
      auto it_fed2crate = constants::fed2crate_map.find(fed);
      if (it_fed2crate != constants::fed2crate_map.end()) {
        crate_slot =
            std::make_pair<uint16_t const, uint16_t const>((uint16_t const)it_fed2crate->second, (uint16_t const)slot);
      }
      return crate_slot;
    }

    uint16_t crate2fed(int crate, int slot) {
      //	 for the details see Constants.h
      int fed = 0;
      auto it_crate2fed = constants::crate2fed_map.find(crate);
      if (it_crate2fed != constants::crate2fed_map.end()) {
        fed = it_crate2fed->second;
        if (fed <= FED_VME_MAX && fed > 0) {
          if (slot > 10 && (std::find(constants::crateListVME.begin(), constants::crateListVME.end(), crate) !=
                            constants::crateListVME.end())) {
            ++fed;
          }
        } else {
          if (crate == 22 || crate == 29 || crate == 32 || crate == 23 || crate == 27 || crate == 26 ||
              crate == 38) {  // needed to handle dual fed readout for HF and HO
            if (slot > 6 && (std::find(constants::crateListuTCA.begin(), constants::crateListuTCA.end(), crate) !=
                             constants::crateListuTCA.end())) {
              ++fed;  // hard coded mid slot FED numbering
            }
          } else {  // needed to handle  3-FED readout for HBHE
            if (slot > 8 && (std::find(constants::crateListuTCA.begin(), constants::crateListuTCA.end(), crate) !=
                             constants::crateListuTCA.end())) {
              fed = (fed + 1100) / 2 + 40;  // hard coded right slot FED numbering, no better way
            } else if (slot > 4 &&
                       (std::find(constants::crateListuTCA.begin(), constants::crateListuTCA.end(), crate) !=
                        constants::crateListuTCA.end())) {
              ++fed;  // hard coded mid slot FED numbering
            }
          }
        }
      }
      return fed;
    }

    uint32_t hash(HcalDetId const &did) { return did.rawId(); }
    uint32_t hash(HcalElectronicsId const &eid) { return eid.rawId(); }
    uint32_t hash(HcalTrigTowerDetId const &tid) { return tid.rawId(); }

    std::vector<int> getCrateList(HcalElectronicsMap const *emap) {
      std::vector<int> vCrates;
      std::vector<HcalElectronicsId> vids = emap->allElectronicsIdPrecision();
      for (std::vector<HcalElectronicsId>::const_iterator it = vids.begin(); it != vids.end(); ++it) {
        HcalElectronicsId eid = HcalElectronicsId(it->rawId());
        int crate = eid.crateId();
        if (std::find(vCrates.begin(), vCrates.end(), crate) == vCrates.end()) {
          vCrates.push_back(crate);
        }
      }
      std::sort(vCrates.begin(), vCrates.end());
      return vCrates;
    }

    std::map<int, uint32_t> getCrateHashMap(HcalElectronicsMap const *emap) {
      std::map<int, uint32_t> crateHashMap;
      std::vector<HcalElectronicsId> vids = emap->allElectronicsIdPrecision();
      for (std::vector<HcalElectronicsId>::const_iterator it = vids.begin(); it != vids.end(); ++it) {
        HcalElectronicsId eid = HcalElectronicsId(it->rawId());
        int this_crate = eid.crateId();
        uint32_t this_hash =
            (eid.isVMEid()
                 ? utilities::hash(HcalElectronicsId(FIBERCH_MIN, FIBER_VME_MIN, eid.spigot(), eid.dccid()))
                 : utilities::hash(HcalElectronicsId(eid.crateId(), eid.slot(), FIBER_uTCA_MIN1, FIBERCH_MIN, false)));
        if (crateHashMap.find(this_crate) == crateHashMap.end()) {
          crateHashMap[this_crate] = this_hash;
        }
      }
      return crateHashMap;
    }

    std::vector<int> getFEDList(HcalElectronicsMap const *emap) {
      std::vector<int> vfeds;
      std::vector<HcalElectronicsId> vids = emap->allElectronicsIdPrecision();
      for (std::vector<HcalElectronicsId>::const_iterator it = vids.begin(); it != vids.end(); ++it) {
        int fed = it->isVMEid() ? it->dccid() + FED_VME_MIN : crate2fed(it->crateId(), it->slot());
        uint32_t n = 0;
        for (std::vector<int>::const_iterator jt = vfeds.begin(); jt != vfeds.end(); ++jt)
          if (fed == *jt)
            break;
          else
            n++;
        if (n == vfeds.size())
          vfeds.push_back(fed);
      }

      std::sort(vfeds.begin(), vfeds.end());
      return vfeds;
    }
    std::vector<int> getFEDVMEList(HcalElectronicsMap const *emap) {
      std::vector<int> vfeds;
      std::vector<HcalElectronicsId> vids = emap->allElectronicsIdPrecision();
      for (std::vector<HcalElectronicsId>::const_iterator it = vids.begin(); it != vids.end(); ++it) {
        if (!it->isVMEid())
          continue;
        int fed = it->isVMEid() ? it->dccid() + FED_VME_MIN : crate2fed(it->crateId(), it->slot());
        uint32_t n = 0;
        for (std::vector<int>::const_iterator jt = vfeds.begin(); jt != vfeds.end(); ++jt)
          if (fed == *jt)
            break;
          else
            n++;
        if (n == vfeds.size())
          vfeds.push_back(fed);
      }

      std::sort(vfeds.begin(), vfeds.end());
      return vfeds;
    }
    std::vector<int> getFEDuTCAList(HcalElectronicsMap const *emap) {
      std::vector<int> vfeds;
      std::vector<HcalElectronicsId> vids = emap->allElectronicsIdPrecision();
      for (std::vector<HcalElectronicsId>::const_iterator it = vids.begin(); it != vids.end(); ++it) {
        if (it->isVMEid())
          continue;
        int fed = it->isVMEid() ? it->dccid() + FED_VME_MIN : crate2fed(it->crateId(), it->slot());
        uint32_t n = 0;
        for (std::vector<int>::const_iterator jt = vfeds.begin(); jt != vfeds.end(); ++jt)
          if (fed == *jt)
            break;
          else
            n++;
        if (n == vfeds.size())
          vfeds.push_back(fed);
      }

      std::sort(vfeds.begin(), vfeds.end());
      return vfeds;
    }

    bool isFEDHBHE(HcalElectronicsId const &eid) {
      if (eid.isVMEid()) {
        return false;
      } else {
        int fed = crate2fed(eid.crateId(), eid.slot());
        if ((fed >= 1100 && fed < 1118) || (fed >= 1140 && fed <= 1148))
          return true;
        else
          return false;
      }

      return false;
    }

    bool isFEDHF(HcalElectronicsId const &eid) {
      if (eid.isVMEid())
        return false;
      int fed = crate2fed(eid.crateId(), eid.slot());
      if (fed >= 1118 && fed <= 1123)
        return true;
      else
        return false;

      return false;
    }

    bool isFEDHO(HcalElectronicsId const &eid) {
      if (eid.isVMEid())
        return false;
      int fed = crate2fed(eid.crateId(), eid.slot());
      if (fed >= 1124 && fed <= 1135)
        return true;
      else
        return false;

      return false;
    }

    /*
 *	Orbit Gap Related
 */
    std::string ogtype2string(OrbitGapType type) {
      switch (type) {
        case tNull:
          return "Null";
        case tPhysics:
          return "Physics";
        case tPedestal:
          return "Pedestal";
        case tLED:
          return "LED";
        case tHFRaddam:
          return "HFRaddam";
        case tHBHEHPD:
          return "HBHEHPD";
        case tHO:
          return "HO";
        case tHF:
          return "HF";
        case tZDC:
          return "ZDC";
        case tHEPMega:
          return "HEPMegatile";
        case tHEMMega:
          return "HEMMegatile";
        case tHBPMega:
          return "HBPMegatile";
        case tHBMMega:
          return "HBMMegatile";
        case tCRF:
          return "CRF";
        case tCalib:
          return "Calib";
        case tSafe:
          return "Safe";
        case tSiPMPMT:
          return "SiPM-PMT";
        case tMegatile:
          return "Megatile";
        case tUnknown:
          return "Unknown";
        default:
          return "Null";
      }
    }

    int getRBX(uint32_t iphi) { return (((iphi + 2) % 72) + 4 - 1) / 4; }

  }  // namespace utilities
}  // namespace hcaldqm