1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
/*
* OnlineDQMDigiAD_cmssw.cpp
*
* Created on: Jun 10, 2023
* Author: Mulugeta W.Asres, UiA, Norway
*
* The implementation follows https://github.com/cms-sw/cmssw/tree/master/PhysicsTools/ONNXRuntime
*/
// #include "FWCore/Utilities/interface/Exception.h"
// #include "FWCore/Utilities/interface/thread_safety_macros.h"
// #include "FWCore/Framework/interface/Event.h"
#include "PhysicsTools/ONNXRuntime/interface/ONNXRuntime.h"
#include "FWCore/ParameterSet/interface/FileInPath.h"
#include "HeterogeneousCore/CUDAUtilities/interface/requireDevices.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iostream>
#include <memory>
#include <numeric>
#include <algorithm>
#include "DQM/HcalTasks/plugins/OnlineDQMDigiAD_cmssw.h"
// using namespace std;
using namespace cms::Ort;
// Constructor
OnlineDQMDigiAD::OnlineDQMDigiAD(const std::string model_system_name,
const std::string &modelFilepath,
Backend backend) {
std::string instanceName{"DESMOD Digioccupancy Map AD inference"};
/**************** Initailize Model Memory States ******************/
InitializeState(); // initailize model memory states to zero
/**************** Create ORT session ******************/
// Set up options for session
auto session_options = ONNXRuntime::defaultSessionOptions(backend);
// Create session by loading the onnx model
model_path = edm::FileInPath(modelFilepath).fullPath();
auto uOrtSession = std::make_unique<ONNXRuntime>(model_path, &session_options);
ort_mSession = std::move(uOrtSession);
// check model availability
hcal_subsystem_name = model_system_name;
IsModelExist(hcal_subsystem_name); // assert model integration for the given hcal system name
if (hcal_subsystem_name == "he") {
std::vector<std::vector<int64_t>> input_shapes_ = {
{batch_size, 64, 72, 7, 1},
{batch_size, 1},
{1, 1},
{batch_size, model_state_inner_dim, model_state_layer_dims[0][0]},
{batch_size, model_state_inner_dim, model_state_layer_dims[0][0]},
{batch_size, model_state_inner_dim, model_state_layer_dims[0][1]},
{batch_size, model_state_inner_dim, model_state_layer_dims[0][1]},
{batch_size, model_state_inner_dim, model_state_layer_dims[1][0]},
{batch_size, model_state_inner_dim, model_state_layer_dims[1][0]},
{batch_size, model_state_inner_dim, model_state_layer_dims[1][1]},
{batch_size, model_state_inner_dim, model_state_layer_dims[1][1]}}; // input dims
input_shapes = input_shapes_;
}
else if (hcal_subsystem_name == "hb") {
std::vector<std::vector<int64_t>> input_shapes_ = {
{batch_size, 64, 72, 4, 1},
{batch_size, 1},
{1, 1},
{batch_size, model_state_inner_dim, model_state_layer_dims[0][0]},
{batch_size, model_state_inner_dim, model_state_layer_dims[0][0]},
{batch_size, model_state_inner_dim, model_state_layer_dims[0][1]},
{batch_size, model_state_inner_dim, model_state_layer_dims[0][1]},
{batch_size, model_state_inner_dim, model_state_layer_dims[1][0]},
{batch_size, model_state_inner_dim, model_state_layer_dims[1][0]},
{batch_size, model_state_inner_dim, model_state_layer_dims[1][1]},
{batch_size, model_state_inner_dim, model_state_layer_dims[1][1]}}; // input dims
input_shapes = input_shapes_;
}
}
void OnlineDQMDigiAD::IsModelExist(std::string hcal_subsystem_name) {
if (std::find(hcal_modeled_systems.begin(), hcal_modeled_systems.end(), hcal_subsystem_name) ==
hcal_modeled_systems.end()) {
std::string err =
"ML for OnlineDQM is not currently supported for the selected " + hcal_subsystem_name + " system!\n";
throw std::invalid_argument(err);
}
}
void OnlineDQMDigiAD::InitializeState() {
// model memory states vectors init, only when the runs starts or for the first LS
std::fill(input_model_state_memory_e_0_0.begin(),
input_model_state_memory_e_0_0.end(),
float(0.0)); // init model memory states-encoder_layer_0_state_0 to zero
std::fill(input_model_state_memory_e_0_1.begin(),
input_model_state_memory_e_0_1.end(),
float(0.0)); // init model memory states-encoder_layer_0_state_1 to zero
std::fill(input_model_state_memory_e_1_0.begin(),
input_model_state_memory_e_1_0.end(),
float(0.0)); // init model memory states-encoder_layer_1_state_0 to zero
std::fill(input_model_state_memory_e_1_1.begin(),
input_model_state_memory_e_1_1.end(),
float(0.0)); // init model memory states-encoder_layer_1_state_1 to zero
std::fill(input_model_state_memory_d_0_0.begin(),
input_model_state_memory_d_0_0.end(),
float(0.0)); // init model memory states-decoder_layer_0_state_0 to zero
std::fill(input_model_state_memory_d_0_1.begin(),
input_model_state_memory_d_0_1.end(),
float(0.0)); // init model memory states-decoder_layer_0_state_1 to zero
std::fill(input_model_state_memory_d_1_0.begin(),
input_model_state_memory_d_1_0.end(),
float(0.0)); // init model memory states-decoder_layer_1_state_0 to zero
std::fill(input_model_state_memory_d_1_1.begin(),
input_model_state_memory_d_1_1.end(),
float(0.0)); // init model memory states-decoder_layer_1_state_1 to zero
// model_state_refresh_counter = 15; // counter set due to onnx double datatype handling limitation that might cause precision error to propagate.
model_state_refresh_counter =
1; // DQM multithread returns non-sequential LS. Hence, the model will not keep states (experimental)
}
std::vector<float> OnlineDQMDigiAD::Serialize2DVector(const std::vector<std::vector<float>> &input_2d_vec) {
std::vector<float> output;
for (const auto &row : input_2d_vec) {
for (const auto &element : row) {
output.push_back(element);
}
}
return output;
}
std::vector<std::vector<float>> OnlineDQMDigiAD::Map1DTo2DVector(const std::vector<float> &input_1d_vec,
const int numSplits) {
if (numSplits <= 0)
throw std::invalid_argument("numSplits must be greater than 0.");
std::size_t const splitted_size = input_1d_vec.size() / numSplits;
if (splitted_size * numSplits != input_1d_vec.size())
throw std::invalid_argument("Conversion is not allowed! The input vector length " +
std::to_string(input_1d_vec.size()) + " must be divisible by the numSplits " +
std::to_string(numSplits) + ".");
std::vector<std::vector<float>> output_2d_vec;
for (int i = 0; i < numSplits; i++) {
std::vector<float> chunch_vec(input_1d_vec.begin() + i * splitted_size,
input_1d_vec.begin() + (i + 1) * splitted_size);
output_2d_vec.push_back(chunch_vec);
}
return output_2d_vec;
}
std::vector<float> OnlineDQMDigiAD::PrepareONNXDQMMapVectors(
std::vector<std::vector<std::vector<float>>> &digiHcal2DHist_depth_all) {
std::vector<float> digi3DHistVector_serialized;
for (const std::vector<std::vector<float>> &digiHcal2DHist_depth : digiHcal2DHist_depth_all) {
std::vector<float> digiHcalDHist_serialized_depth = Serialize2DVector(digiHcal2DHist_depth);
digi3DHistVector_serialized.insert(digi3DHistVector_serialized.end(),
digiHcalDHist_serialized_depth.begin(),
digiHcalDHist_serialized_depth.end());
}
return digi3DHistVector_serialized;
}
std::vector<std::vector<std::vector<float>>> OnlineDQMDigiAD::ONNXOutputToDQMHistMap(
const std::vector<std::vector<float>> &ad_model_output_vectors,
const int numDepth,
const int numDIeta,
const int selOutputIdx) {
// each output_vector is a serialized 3d hist map
const std::vector<float> &output_vector = ad_model_output_vectors[selOutputIdx];
std::vector<std::vector<float>> output_2d_vec = Map1DTo2DVector(output_vector, numDepth);
std::vector<std::vector<std::vector<float>>> digiHcal3DHist;
for (const std::vector<float> &output_vector_depth : output_2d_vec) {
std::vector<std::vector<float>> digiHcal2DHist_depth = Map1DTo2DVector(output_vector_depth, numDIeta);
digiHcal3DHist.push_back(digiHcal2DHist_depth);
}
return digiHcal3DHist;
}
// Perform inference for a given dqm map
std::vector<std::vector<float>> OnlineDQMDigiAD::Inference(std::vector<float> &digiHcalMapTW,
std::vector<float> &numEvents,
std::vector<float> &adThr,
std::vector<float> &input_model_state_memory_e_0_0,
std::vector<float> &input_model_state_memory_e_0_1,
std::vector<float> &input_model_state_memory_e_1_0,
std::vector<float> &input_model_state_memory_e_1_1,
std::vector<float> &input_model_state_memory_d_0_0,
std::vector<float> &input_model_state_memory_d_0_1,
std::vector<float> &input_model_state_memory_d_1_0,
std::vector<float> &input_model_state_memory_d_1_1) {
/**************** Preprocessing ******************/
// Create input tensor (including size and value) from the loaded inputs
// Compute the product of all input dimension
// Assign memory for input tensor
// inputTensors will be used by the Session Run for inference
input_values.clear();
input_values.emplace_back(digiHcalMapTW);
input_values.emplace_back(numEvents);
input_values.emplace_back(adThr);
input_values.emplace_back(input_model_state_memory_e_0_0);
input_values.emplace_back(input_model_state_memory_e_0_1);
input_values.emplace_back(input_model_state_memory_e_1_0);
input_values.emplace_back(input_model_state_memory_e_1_1);
input_values.emplace_back(input_model_state_memory_d_0_0);
input_values.emplace_back(input_model_state_memory_d_0_1);
input_values.emplace_back(input_model_state_memory_d_1_0);
input_values.emplace_back(input_model_state_memory_d_1_1);
/**************** Inference ******************/
output_values = ort_mSession->run(input_names, input_values, input_shapes, output_names, batch_size);
return output_values;
}
// AD method to be called by the CMS system
std::vector<std::vector<float>> OnlineDQMDigiAD::Inference_CMSSW(
const std::vector<std::vector<float>> &digiHcal2DHist_depth_1,
const std::vector<std::vector<float>> &digiHcal2DHist_depth_2,
const std::vector<std::vector<float>> &digiHcal2DHist_depth_3,
const std::vector<std::vector<float>> &digiHcal2DHist_depth_4,
const std::vector<std::vector<float>> &digiHcal2DHist_depth_5,
const std::vector<std::vector<float>> &digiHcal2DHist_depth_6,
const std::vector<std::vector<float>> &digiHcal2DHist_depth_7,
const float LS_numEvents,
const float flagDecisionThr)
{
/**************** Prepare data ******************/
// merging all 2d hist into one 3d depth[ieta[iphi]]
std::vector<std::vector<std::vector<float>>> digiHcal2DHist_depth_all;
if (hcal_subsystem_name == "he") {
digiHcal2DHist_depth_all.push_back(digiHcal2DHist_depth_1);
digiHcal2DHist_depth_all.push_back(digiHcal2DHist_depth_2);
digiHcal2DHist_depth_all.push_back(digiHcal2DHist_depth_3);
digiHcal2DHist_depth_all.push_back(digiHcal2DHist_depth_4);
digiHcal2DHist_depth_all.push_back(digiHcal2DHist_depth_5);
digiHcal2DHist_depth_all.push_back(digiHcal2DHist_depth_6);
digiHcal2DHist_depth_all.push_back(digiHcal2DHist_depth_7);
}
else if (hcal_subsystem_name == "hb") {
digiHcal2DHist_depth_all.push_back(digiHcal2DHist_depth_1);
digiHcal2DHist_depth_all.push_back(digiHcal2DHist_depth_2);
digiHcal2DHist_depth_all.push_back(digiHcal2DHist_depth_3);
digiHcal2DHist_depth_all.push_back(digiHcal2DHist_depth_4);
}
// convert the 3d depth[ieta[iphi]] vector into 1d and commbined
std::vector<float> digiHcalMapTW = PrepareONNXDQMMapVectors(digiHcal2DHist_depth_all);
std::vector<float> adThr{flagDecisionThr}; // AD decision threshold, increase to reduce sensitivity
std::vector<float> numEvents{LS_numEvents};
// call model inference
/**************** Inference ******************/
std::vector<std::vector<float>> output_tensors = Inference(digiHcalMapTW,
numEvents,
adThr,
input_model_state_memory_e_0_0,
input_model_state_memory_e_0_1,
input_model_state_memory_e_1_0,
input_model_state_memory_e_1_1,
input_model_state_memory_d_0_0,
input_model_state_memory_d_0_1,
input_model_state_memory_d_1_0,
input_model_state_memory_d_1_1);
// auto output_tensors = Inference(digiHcalMapTW, numEvents, adThr);
//std::cout << "******* model inference is success *******" << std::endl;
/**************** Output post processing ******************/
// split outputs into ad output vectors and state_memory vectors
std::string state_output_name_tag = "rnn_hidden";
std::vector<std::vector<float>> ad_model_output_vectors, ad_model_state_vectors;
for (size_t i = 0; i < output_tensors.size(); i++) {
std::string output_names_startstr = output_names[i].substr(
2, state_output_name_tag.length()); // Extract the same number of characters as str2 from mOutputNames
if (output_names_startstr == state_output_name_tag) {
ad_model_state_vectors.emplace_back(output_tensors[i]);
} else {
ad_model_output_vectors.emplace_back(output_tensors[i]);
}
}
if (ad_model_output_vectors.size() == num_state_vectors) {
input_model_state_memory_e_0_0 = ad_model_state_vectors[0];
input_model_state_memory_e_0_1 = ad_model_state_vectors[1];
input_model_state_memory_e_1_0 = ad_model_state_vectors[2];
input_model_state_memory_e_1_1 = ad_model_state_vectors[3];
input_model_state_memory_d_0_0 = ad_model_state_vectors[4];
input_model_state_memory_d_0_1 = ad_model_state_vectors[5];
input_model_state_memory_d_1_0 = ad_model_state_vectors[6];
input_model_state_memory_d_1_1 = ad_model_state_vectors[7];
} else {
std::cout << "Warning: the number of output state vectors does NOT equals to expected!. The states are set to "
"default values."
<< std::endl;
InitializeState();
}
// # if onnx is returning serialized 1d vectors instead of vector of 3d vectors
// aml score and flag are at index 5 and 7 of the vector ad_model_output_vectors: anomaly score: ad_model_output_vectors[5], anomaly flags: ad_model_output_vectors[7]
/*
selOutputIdx: index to select of the onnx output. e.g. 5 is the anomaly score and 7 is the anomaly flag (1 is with anomaly, 0 is healthy)
std::vector<std::vector<std::vector<float>>> digiHcal3DHist_ANOMALY_FLAG = ONNXOutputToDQMHistMap(ad_model_output_vectors, 7)
std::vector<std::vector<std::vector<float>>> digiHcal3DHist_ANOMALY_SCORE = ONNXOutputToDQMHistMap(ad_model_output_vectors, 5)
*/
// reduce counter for each ls call. due to onnx double datatype handling limitation that might cause precision error to propagate.
if (--model_state_refresh_counter == 0)
InitializeState();
return ad_model_output_vectors;
}
|