Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#include "DQM/HcalTasks/interface/RecoRunSummary.h"

namespace hcaldqm {
  using namespace constants;

  RecoRunSummary::RecoRunSummary(std::string const& name,
                                 std::string const& taskname,
                                 edm::ParameterSet const& ps,
                                 edm::ConsumesCollector& iC)
      : DQClient(name, taskname, ps, iC) {
    _thresh_unihf = ps.getUntrackedParameter<double>("thresh_unihf", 0.2);
    _thresh_tcds = ps.getUntrackedParameter<double>("thresh_tcds", 1.5);
  }

  /* virtual */ void RecoRunSummary::beginRun(edm::Run const& r, edm::EventSetup const& es) {
    DQClient::beginRun(r, es);
  }

  /*
	 *
	 */
  /* virtual */ void RecoRunSummary::endLuminosityBlock(DQMStore::IBooker& ib,
                                                        DQMStore::IGetter& ig,
                                                        edm::LuminosityBlock const& lb,
                                                        edm::EventSetup const& es) {
    DQClient::endLuminosityBlock(ib, ig, lb, es);
  }

  /*
	 *
	 */
  /* virtual */ std::vector<flag::Flag> RecoRunSummary::endJob(DQMStore::IBooker& ib, DQMStore::IGetter& ig) {
    if (_ptype != fOffline)
      return std::vector<flag::Flag>();

    // FILTERS, some useful vectors, hash maps
    std::vector<uint32_t> vhashCrateHF;
    vhashCrateHF.push_back(HcalElectronicsId(22, SLOT_uTCA_MIN, FIBER_uTCA_MIN1, FIBERCH_MIN, false).rawId());
    vhashCrateHF.push_back(HcalElectronicsId(29, SLOT_uTCA_MIN, FIBER_uTCA_MIN1, FIBERCH_MIN, false).rawId());
    vhashCrateHF.push_back(HcalElectronicsId(32, SLOT_uTCA_MIN, FIBER_uTCA_MIN1, FIBERCH_MIN, false).rawId());
    filter::HashFilter filter_CrateHF;
    filter_CrateHF.initialize(filter::fPreserver, hashfunctions::fCrate,
                              vhashCrateHF);  // preserve only HF crates
    electronicsmap::ElectronicsMap ehashmap;
    ehashmap.initialize(_emap, electronicsmap::fD2EHashMap);
    bool tcdsshift = false;
    std::vector<flag::Flag> vflags;
    vflags.resize(nRecoFlag);
    vflags[fUniSlotHF] = flag::Flag("UniSlotHF");
    vflags[fTCDS] = flag::Flag("TCDS");

    //	INITIALIZE
    Container2D cOccupancy_depth, cOccupancyCut_depth;
    ContainerSingle2D cSummary;
    Container1D cTimingCut_HBHEPartition;
    ContainerXXX<double> xUniHF, xUni;
    xUni.initialize(hashfunctions::fCrate);
    xUniHF.initialize(hashfunctions::fCrateSlot);
    cOccupancy_depth.initialize(_taskname,
                                "Occupancy",
                                hashfunctions::fdepth,
                                new quantity::DetectorQuantity(quantity::fieta),
                                new quantity::DetectorQuantity(quantity::fiphi),
                                new quantity::ValueQuantity(quantity::fN),
                                0);
    cOccupancyCut_depth.initialize(_taskname,
                                   "OccupancyCut",
                                   hashfunctions::fdepth,
                                   new quantity::DetectorQuantity(quantity::fieta),
                                   new quantity::DetectorQuantity(quantity::fiphi),
                                   new quantity::ValueQuantity(quantity::fN),
                                   0);
    cTimingCut_HBHEPartition.initialize(_taskname,
                                        "TimingCut",
                                        hashfunctions::fHBHEPartition,
                                        new quantity::ValueQuantity(quantity::fTiming_ns),
                                        new quantity::ValueQuantity(quantity::fN),
                                        0);

    cSummary.initialize(_name,
                        "Summary",
                        new quantity::CrateQuantity(_emap),
                        new quantity::FlagQuantity(vflags),
                        new quantity::ValueQuantity(quantity::fState),
                        0);

    //	BOOK
    xUniHF.book(_emap, filter_CrateHF);

    //	LOAD
    cOccupancy_depth.load(ig, _emap, _subsystem);
    cOccupancyCut_depth.load(ig, _emap, _subsystem);
    cTimingCut_HBHEPartition.book(ib, _emap, _subsystem);
    cSummary.book(ib, _subsystem);

    //	iterate over all channels
    std::vector<HcalGenericDetId> gids = _emap->allPrecisionId();
    for (std::vector<HcalGenericDetId>::const_iterator it = gids.begin(); it != gids.end(); ++it) {
      if (!it->isHcalDetId())
        continue;

      HcalDetId did(it->rawId());
      HcalElectronicsId eid = HcalElectronicsId(ehashmap.lookup(did));

      if (did.subdet() == HcalForward)
        xUniHF.get(eid) += cOccupancyCut_depth.getBinContent(did);
    }

    //	iphi/slot HF non uniformity
    for (doubleCompactMap::const_iterator it = xUniHF.begin(); it != xUniHF.end(); ++it) {
      uint32_t hash1 = it->first;
      HcalElectronicsId eid1(hash1);
      double x1 = it->second;
      for (doubleCompactMap::const_iterator jt = xUniHF.begin(); jt != xUniHF.end(); ++jt) {
        if (jt == it)
          continue;

        double x2 = jt->second;
        if (x2 == 0)
          continue;
        if (x1 / x2 < _thresh_unihf)
          xUni.get(eid1)++;
      }
    }

    //	TCDS shift
    double a = cTimingCut_HBHEPartition.getMean(HcalDetId(HcalBarrel, 1, 5, 1));
    double b = cTimingCut_HBHEPartition.getMean(HcalDetId(HcalBarrel, 1, 30, 1));
    double c = cTimingCut_HBHEPartition.getMean(HcalDetId(HcalBarrel, 1, 55, 1));
    double dab = fabs(a - b);
    double dac = fabs(a - c);
    double dbc = fabs(b - c);
    if (dab >= _thresh_tcds || dac >= _thresh_tcds || dbc >= _thresh_tcds)
      tcdsshift = true;

    //	summary flags
    std::vector<flag::Flag> sumflags;
    for (std::vector<uint32_t>::const_iterator it = _vhashCrates.begin(); it != _vhashCrates.end(); ++it) {
      flag::Flag fSum("RECO");
      HcalElectronicsId eid(*it);

      // skip monitoring for ZDC crate for now (Oct. 1 2023), the Hcal DQM group need to discuss with the ZDC group on the monitoring settings.
      if (HcalGenericDetId(_emap->lookup(eid)).isHcalZDCDetId()) {
        sumflags.push_back(fSum);
        continue;
      }

      HcalDetId did = HcalDetId(_emap->lookup(eid));

      //	registered @cDAQ
      if (did.subdet() == HcalBarrel || did.subdet() == HcalEndcap) {
        if (tcdsshift)
          vflags[fTCDS]._state = flag::fBAD;
        else
          vflags[fTCDS]._state = flag::fGOOD;
      }
      if (did.subdet() == HcalForward) {
        if (xUni.get(eid) > 0)
          vflags[fUniSlotHF]._state = flag::fBAD;
        else
          vflags[fUniSlotHF]._state = flag::fGOOD;
      }

      //	combine
      int iflag = 0;
      for (std::vector<flag::Flag>::iterator ft = vflags.begin(); ft != vflags.end(); ++ft) {
        cSummary.setBinContent(eid, iflag, ft->_state);
        fSum += (*ft);
        iflag++;
        ft->reset();
      }
      sumflags.push_back(fSum);
    }

    return sumflags;
  }
}  // namespace hcaldqm