Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
/*
 *  See header file for a description of this class.
 *
 *  \author S. Bolognesi, Eric - CERN
 */

#include "DQM/Physics/src/QcdHighPtDQM.h"

#include "FWCore/Framework/interface/Event.h"
#include "FWCore/Framework/interface/EventSetup.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "DataFormats/Common/interface/Handle.h"

#include "DQMServices/Core/interface/DQMStore.h"
#include "FWCore/ServiceRegistry/interface/Service.h"

#include "DataFormats/METReco/interface/CaloMET.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include <vector>

#include <string>
#include <cmath>

using namespace std;
using namespace edm;
using namespace reco;
using namespace math;

// Get Jets and MET (no MET plots yet pending converging w/JetMET group)

QcdHighPtDQM::QcdHighPtDQM(const ParameterSet &iConfig)
    : jetToken_(consumes<CaloJetCollection>(iConfig.getUntrackedParameter<edm::InputTag>("jetTag"))),
      metToken1_(consumes<CaloMETCollection>(iConfig.getUntrackedParameter<edm::InputTag>("metTag1"))),
      metToken2_(consumes<CaloMETCollection>(iConfig.getUntrackedParameter<edm::InputTag>("metTag2"))),
      metToken3_(consumes<CaloMETCollection>(iConfig.getUntrackedParameter<edm::InputTag>("metTag3"))),
      metToken4_(consumes<CaloMETCollection>(iConfig.getUntrackedParameter<edm::InputTag>("metTag4"))) {}

QcdHighPtDQM::~QcdHighPtDQM() {}

void QcdHighPtDQM::bookHistograms(DQMStore::IBooker &iBooker, edm::Run const &, edm::EventSetup const &) {
  iBooker.setCurrentFolder("Physics/QcdHighPt");

  MEcontainer_["dijet_mass"] =
      iBooker.book1D("dijet_mass", "dijet resonance invariant mass, barrel region", 100, 0, 1000);
  MEcontainer_["njets"] = iBooker.book1D("njets", "jet multiplicity", 10, 0, 10);
  MEcontainer_["etaphi"] = iBooker.book2D("etaphi", "eta/phi distribution", 83, -42, 42, 72, -M_PI, M_PI);
  MEcontainer_["njets30"] = iBooker.book1D("njets30", "jet multiplicity, pt > 30 GeV", 10, 0, 10);

  // book histograms for inclusive jet quantities
  MEcontainer_["inclusive_jet_pt"] = iBooker.book1D("inclusive_jet_pt", "inclusive jet Pt spectrum", 100, 0, 1000);
  MEcontainer_["inclusive_jet_pt_barrel"] =
      iBooker.book1D("inclusive_jet_pt_barrel", "inclusive jet Pt, eta < 1.3", 100, 0, 1000);
  MEcontainer_["inclusive_jet_pt_forward"] =
      iBooker.book1D("inclusive_jet_pt_forward", "inclusive jet Pt, 3.0 < eta < 5.0", 100, 0, 1000);
  MEcontainer_["inclusive_jet_pt_endcap"] =
      iBooker.book1D("inclusive_jet_pt_endcap", "inclusive jet Pt, 1.3 < eta < 3.0", 100, 0, 1000);

  // book histograms for leading jet quantities
  MEcontainer_["leading_jet_pt"] = iBooker.book1D("leading_jet_pt", "leading jet Pt", 100, 0, 1000);
  MEcontainer_["leading_jet_pt_barrel"] =
      iBooker.book1D("leading_jet_pt_barrel", "leading jet Pt, eta < 1.3", 100, 0, 1000);
  MEcontainer_["leading_jet_pt_forward"] =
      iBooker.book1D("leading_jet_pt_forward", "leading jet Pt, 3.0 < eta < 5.0", 100, 0, 1000);
  MEcontainer_["leading_jet_pt_endcap"] =
      iBooker.book1D("leading_jet_pt_endcap", "leading jet Pt, 1.3 < eta < 3.0", 100, 0, 1000);

  // book histograms for met over sum et and met over leading jet pt for various
  // flavors of MET
  MEcontainer_["movers_met"] = iBooker.book1D("movers_met", "MET over Sum ET for basic MET collection", 50, 0, 1);
  MEcontainer_["moverl_met"] =
      iBooker.book1D("moverl_met", "MET over leading jet Pt for basic MET collection", 50, 0, 2);

  MEcontainer_["movers_metho"] = iBooker.book1D("movers_metho", "MET over Sum ET for MET HO collection", 50, 0, 1);
  MEcontainer_["moverl_metho"] =
      iBooker.book1D("moverl_metho", "MET over leading jet Pt for MET HO collection", 50, 0, 2);

  MEcontainer_["movers_metnohf"] =
      iBooker.book1D("movers_metnohf", "MET over Sum ET for MET no HF collection", 50, 0, 1);
  MEcontainer_["moverl_metnohf"] =
      iBooker.book1D("moverl_metnohf", "MET over leading jet Pt for MET no HF collection", 50, 0, 2);

  MEcontainer_["movers_metnohfho"] =
      iBooker.book1D("movers_metnohfho", "MET over Sum ET for MET no HF HO collection", 50, 0, 1);
  MEcontainer_["moverl_metnohfho"] =
      iBooker.book1D("moverl_metnohfho", "MET over leading jet Pt for MET no HF HO collection", 50, 0, 2);

  // book histograms for EMF fraction for all jets and first 3 jets
  MEcontainer_["inclusive_jet_EMF"] = iBooker.book1D("inclusive_jet_EMF", "inclusive jet EMF", 50, -1, 1);
  MEcontainer_["leading_jet_EMF"] = iBooker.book1D("leading_jet_EMF", "leading jet EMF", 50, -1, 1);
  MEcontainer_["second_jet_EMF"] = iBooker.book1D("second_jet_EMF", "second jet EMF", 50, -1, 1);
  MEcontainer_["third_jet_EMF"] = iBooker.book1D("third_jet_EMF", "third jet EMF", 50, -1, 1);
}

// method to calculate MET over Sum ET from a particular MET collection
float QcdHighPtDQM::movers(const CaloMETCollection &metcollection) {
  float metovers = 0;
  CaloMETCollection::const_iterator met_iter;
  for (met_iter = metcollection.begin(); met_iter != metcollection.end(); ++met_iter) {
    float mex = met_iter->momentum().x();
    float mey = met_iter->momentum().y();
    float met = sqrt(mex * mex + mey * mey);
    float sumet = met_iter->sumEt();
    metovers = (met / sumet);
  }
  return metovers;
}

// method to calculate MET over Leading jet PT for a particular MET collection
float QcdHighPtDQM::moverl(const CaloMETCollection &metcollection, float &ljpt) {
  float metoverl = 0;
  CaloMETCollection::const_iterator met_iter;
  for (met_iter = metcollection.begin(); met_iter != metcollection.end(); ++met_iter) {
    float mex = met_iter->momentum().x();
    float mey = met_iter->momentum().y();
    float met = sqrt(mex * mex + mey * mey);
    metoverl = (met / ljpt);
  }
  return metoverl;
}

void QcdHighPtDQM::analyze(const Event &iEvent, const EventSetup &iSetup) {
  // Get Jets
  edm::Handle<CaloJetCollection> jetHandle;
  iEvent.getByToken(jetToken_, jetHandle);
  const CaloJetCollection &jets = *jetHandle;
  CaloJetCollection::const_iterator jet_iter;

  // Get MET collections
  edm::Handle<CaloMETCollection> metHandle;
  iEvent.getByToken(metToken1_, metHandle);
  const CaloMETCollection &met = *metHandle;

  edm::Handle<CaloMETCollection> metHOHandle;
  iEvent.getByToken(metToken2_, metHOHandle);
  const CaloMETCollection &metHO = *metHOHandle;

  edm::Handle<CaloMETCollection> metNoHFHandle;
  iEvent.getByToken(metToken3_, metNoHFHandle);
  const CaloMETCollection &metNoHF = *metNoHFHandle;

  edm::Handle<CaloMETCollection> metNoHFHOHandle;
  iEvent.getByToken(metToken4_, metNoHFHOHandle);
  const CaloMETCollection &metNoHFHO = *metNoHFHOHandle;

  // initialize leading jet value and jet multiplicity counter
  int njets = 0;
  int njets30 = 0;
  float leading_jetpt = 0;
  float leading_jeteta = 0;

  // initialize variables for picking out leading 2 barrel jets
  reco::CaloJet leadingbarreljet;
  reco::CaloJet secondbarreljet;
  int nbarreljets = 0;

  // get bins in eta.
  // Bins correspond to calotower regions.

  const float etabins[83] = {
      -5.191, -4.889, -4.716, -4.538, -4.363, -4.191, -4.013, -3.839, -3.664, -3.489, -3.314, -3.139, -2.964, -2.853,
      -2.650, -2.500, -2.322, -2.172, -2.043, -1.930, -1.830, -1.740, -1.653, -1.566, -1.479, -1.392, -1.305, -1.218,
      -1.131, -1.044, -.957,  -.879,  -.783,  -.696,  -.609,  -.522,  -.435,  -.348,  -.261,  -.174,  -.087,  0,
      .087,   .174,   .261,   .348,   .435,   .522,   .609,   .696,   .783,   .879,   .957,   1.044,  1.131,  1.218,
      1.305,  1.392,  1.479,  1.566,  1.653,  1.740,  1.830,  1.930,  2.043,  2.172,  2.322,  2.500,  2.650,  2.853,
      2.964,  3.139,  3.314,  3.489,  3.664,  3.839,  4.013,  4.191,  4.363,  4.538,  4.889,  5.191};

  for (jet_iter = jets.begin(); jet_iter != jets.end(); ++jet_iter) {
    njets++;

    // get Jet stats
    float jet_pt = jet_iter->pt();
    float jet_eta = jet_iter->eta();
    float jet_phi = jet_iter->phi();

    // fill jet Pt and jet EMF
    MEcontainer_["inclusive_jet_pt"]->Fill(jet_pt);
    MEcontainer_["inclusive_jet_EMF"]->Fill(jet_iter->emEnergyFraction());

    // pick out up to the first 2 leading barrel jets
    // for use in calculating dijet mass in barrel region
    // also fill jet Pt histogram for barrel

    if (jet_eta <= 1.3) {
      MEcontainer_["inclusive_jet_pt_barrel"]->Fill(jet_pt);
      if (nbarreljets == 0) {
        leadingbarreljet = jets[(njets - 1)];
        nbarreljets++;
      } else if (nbarreljets == 1) {
        secondbarreljet = jets[(njets - 1)];
        nbarreljets++;
      }

    }

    // fill jet Pt for endcap and forward regions
    else if (jet_eta <= 3.0 && jet_eta > 1.3) {
      MEcontainer_["inclusive_jet_pt_endcap"]->Fill(jet_pt);
    } else if (jet_eta <= 5.0 && jet_eta > 3.0) {
      MEcontainer_["inclusive_jet_pt_forward"]->Fill(jet_pt);
    }

    // count jet multiplicity for jets with Pt > 30
    if ((jet_pt) > 30)
      njets30++;

    // check leading jet quantities
    if (jet_pt > leading_jetpt) {
      leading_jetpt = jet_pt;
      leading_jeteta = jet_eta;
    }

    // fill eta-phi plot
    for (int eit = 0; eit < 81; eit++) {
      for (int pit = 0; pit < 72; pit++) {
        float low_eta = etabins[eit];
        float high_eta = etabins[eit + 1];
        float low_phi = (-M_PI) + pit * (M_PI / 36);
        float high_phi = low_phi + (M_PI / 36);
        if (jet_eta > low_eta && jet_eta < high_eta && jet_phi > low_phi && jet_phi < high_phi) {
          MEcontainer_["etaphi"]->Fill((eit - 41), jet_phi);
        }
      }
    }
  }

  // after iterating over all jets, fill leading jet quantity histograms
  // and jet multiplicity histograms

  MEcontainer_["leading_jet_pt"]->Fill(leading_jetpt);

  if (leading_jeteta <= 1.3) {
    MEcontainer_["leading_jet_pt_barrel"]->Fill(leading_jetpt);
  } else if (leading_jeteta <= 3.0 && leading_jeteta > 1.3) {
    MEcontainer_["leading_jet_pt_endcap"]->Fill(leading_jetpt);
  } else if (leading_jeteta <= 5.0 && leading_jeteta > 3.0) {
    MEcontainer_["leading_jet_pt_forward"]->Fill(leading_jetpt);
  }

  MEcontainer_["njets"]->Fill(njets);

  MEcontainer_["njets30"]->Fill(njets30);

  // fill MET over Sum ET and Leading jet PT for all MET flavors
  MEcontainer_["movers_met"]->Fill(movers(met));
  MEcontainer_["moverl_met"]->Fill(movers(met), leading_jetpt);
  MEcontainer_["movers_metho"]->Fill(movers(metHO));
  MEcontainer_["moverl_metho"]->Fill(movers(metHO), leading_jetpt);
  MEcontainer_["movers_metnohf"]->Fill(movers(metNoHF));
  MEcontainer_["moverl_metnohf"]->Fill(movers(metNoHF), leading_jetpt);
  MEcontainer_["movers_metnohfho"]->Fill(movers(metNoHFHO));
  MEcontainer_["moverl_metnohfho"]->Fill(movers(metNoHFHO), leading_jetpt);

  // fetch first 3 jet EMF

  if (!jets.empty()) {
    MEcontainer_["leading_jet_EMF"]->Fill(jets[0].emEnergyFraction());
    if (jets.size() >= 2) {
      MEcontainer_["second_jet_EMF"]->Fill(jets[1].emEnergyFraction());
      if (jets.size() >= 3) {
        MEcontainer_["third_jet_EMF"]->Fill(jets[2].emEnergyFraction());
      }
    }
  }

  // if 2 nontrivial barrel jets, reconstruct dijet mass

  if (nbarreljets == 2) {
    if (leadingbarreljet.energy() > 0 && secondbarreljet.energy() > 0) {
      math::XYZTLorentzVector DiJet = leadingbarreljet.p4() + secondbarreljet.p4();
      float dijet_mass = DiJet.mass();
      MEcontainer_["dijet_mass"]->Fill(dijet_mass);
    }
  }
}

// Local Variables:
// show-trailing-whitespace: t
// truncate-lines: t
// End: