1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
/*
* See header file for a description of this class.
*
* \author S. Bolognesi, Eric - CERN
*/
#include "DQM/Physics/src/QcdHighPtDQM.h"
#include "FWCore/Framework/interface/Event.h"
#include "FWCore/Framework/interface/EventSetup.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "DataFormats/Common/interface/Handle.h"
#include "DQMServices/Core/interface/DQMStore.h"
#include "FWCore/ServiceRegistry/interface/Service.h"
#include "DataFormats/METReco/interface/CaloMET.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include <vector>
#include <string>
#include <cmath>
using namespace std;
using namespace edm;
using namespace reco;
using namespace math;
// Get Jets and MET (no MET plots yet pending converging w/JetMET group)
QcdHighPtDQM::QcdHighPtDQM(const ParameterSet &iConfig)
: jetToken_(consumes<CaloJetCollection>(iConfig.getUntrackedParameter<edm::InputTag>("jetTag"))),
metToken1_(consumes<CaloMETCollection>(iConfig.getUntrackedParameter<edm::InputTag>("metTag1"))),
metToken2_(consumes<CaloMETCollection>(iConfig.getUntrackedParameter<edm::InputTag>("metTag2"))),
metToken3_(consumes<CaloMETCollection>(iConfig.getUntrackedParameter<edm::InputTag>("metTag3"))),
metToken4_(consumes<CaloMETCollection>(iConfig.getUntrackedParameter<edm::InputTag>("metTag4"))) {}
QcdHighPtDQM::~QcdHighPtDQM() {}
void QcdHighPtDQM::bookHistograms(DQMStore::IBooker &iBooker, edm::Run const &, edm::EventSetup const &) {
iBooker.setCurrentFolder("Physics/QcdHighPt");
MEcontainer_["dijet_mass"] =
iBooker.book1D("dijet_mass", "dijet resonance invariant mass, barrel region", 100, 0, 1000);
MEcontainer_["njets"] = iBooker.book1D("njets", "jet multiplicity", 10, 0, 10);
MEcontainer_["etaphi"] = iBooker.book2D("etaphi", "eta/phi distribution", 83, -42, 42, 72, -M_PI, M_PI);
MEcontainer_["njets30"] = iBooker.book1D("njets30", "jet multiplicity, pt > 30 GeV", 10, 0, 10);
// book histograms for inclusive jet quantities
MEcontainer_["inclusive_jet_pt"] = iBooker.book1D("inclusive_jet_pt", "inclusive jet Pt spectrum", 100, 0, 1000);
MEcontainer_["inclusive_jet_pt_barrel"] =
iBooker.book1D("inclusive_jet_pt_barrel", "inclusive jet Pt, eta < 1.3", 100, 0, 1000);
MEcontainer_["inclusive_jet_pt_forward"] =
iBooker.book1D("inclusive_jet_pt_forward", "inclusive jet Pt, 3.0 < eta < 5.0", 100, 0, 1000);
MEcontainer_["inclusive_jet_pt_endcap"] =
iBooker.book1D("inclusive_jet_pt_endcap", "inclusive jet Pt, 1.3 < eta < 3.0", 100, 0, 1000);
// book histograms for leading jet quantities
MEcontainer_["leading_jet_pt"] = iBooker.book1D("leading_jet_pt", "leading jet Pt", 100, 0, 1000);
MEcontainer_["leading_jet_pt_barrel"] =
iBooker.book1D("leading_jet_pt_barrel", "leading jet Pt, eta < 1.3", 100, 0, 1000);
MEcontainer_["leading_jet_pt_forward"] =
iBooker.book1D("leading_jet_pt_forward", "leading jet Pt, 3.0 < eta < 5.0", 100, 0, 1000);
MEcontainer_["leading_jet_pt_endcap"] =
iBooker.book1D("leading_jet_pt_endcap", "leading jet Pt, 1.3 < eta < 3.0", 100, 0, 1000);
// book histograms for met over sum et and met over leading jet pt for various
// flavors of MET
MEcontainer_["movers_met"] = iBooker.book1D("movers_met", "MET over Sum ET for basic MET collection", 50, 0, 1);
MEcontainer_["moverl_met"] =
iBooker.book1D("moverl_met", "MET over leading jet Pt for basic MET collection", 50, 0, 2);
MEcontainer_["movers_metho"] = iBooker.book1D("movers_metho", "MET over Sum ET for MET HO collection", 50, 0, 1);
MEcontainer_["moverl_metho"] =
iBooker.book1D("moverl_metho", "MET over leading jet Pt for MET HO collection", 50, 0, 2);
MEcontainer_["movers_metnohf"] =
iBooker.book1D("movers_metnohf", "MET over Sum ET for MET no HF collection", 50, 0, 1);
MEcontainer_["moverl_metnohf"] =
iBooker.book1D("moverl_metnohf", "MET over leading jet Pt for MET no HF collection", 50, 0, 2);
MEcontainer_["movers_metnohfho"] =
iBooker.book1D("movers_metnohfho", "MET over Sum ET for MET no HF HO collection", 50, 0, 1);
MEcontainer_["moverl_metnohfho"] =
iBooker.book1D("moverl_metnohfho", "MET over leading jet Pt for MET no HF HO collection", 50, 0, 2);
// book histograms for EMF fraction for all jets and first 3 jets
MEcontainer_["inclusive_jet_EMF"] = iBooker.book1D("inclusive_jet_EMF", "inclusive jet EMF", 50, -1, 1);
MEcontainer_["leading_jet_EMF"] = iBooker.book1D("leading_jet_EMF", "leading jet EMF", 50, -1, 1);
MEcontainer_["second_jet_EMF"] = iBooker.book1D("second_jet_EMF", "second jet EMF", 50, -1, 1);
MEcontainer_["third_jet_EMF"] = iBooker.book1D("third_jet_EMF", "third jet EMF", 50, -1, 1);
}
// method to calculate MET over Sum ET from a particular MET collection
float QcdHighPtDQM::movers(const CaloMETCollection &metcollection) {
float metovers = 0;
CaloMETCollection::const_iterator met_iter;
for (met_iter = metcollection.begin(); met_iter != metcollection.end(); ++met_iter) {
float mex = met_iter->momentum().x();
float mey = met_iter->momentum().y();
float met = sqrt(mex * mex + mey * mey);
float sumet = met_iter->sumEt();
metovers = (met / sumet);
}
return metovers;
}
// method to calculate MET over Leading jet PT for a particular MET collection
float QcdHighPtDQM::moverl(const CaloMETCollection &metcollection, float &ljpt) {
float metoverl = 0;
CaloMETCollection::const_iterator met_iter;
for (met_iter = metcollection.begin(); met_iter != metcollection.end(); ++met_iter) {
float mex = met_iter->momentum().x();
float mey = met_iter->momentum().y();
float met = sqrt(mex * mex + mey * mey);
metoverl = (met / ljpt);
}
return metoverl;
}
void QcdHighPtDQM::analyze(const Event &iEvent, const EventSetup &iSetup) {
// Get Jets
edm::Handle<CaloJetCollection> jetHandle;
iEvent.getByToken(jetToken_, jetHandle);
const CaloJetCollection &jets = *jetHandle;
CaloJetCollection::const_iterator jet_iter;
// Get MET collections
edm::Handle<CaloMETCollection> metHandle;
iEvent.getByToken(metToken1_, metHandle);
const CaloMETCollection &met = *metHandle;
edm::Handle<CaloMETCollection> metHOHandle;
iEvent.getByToken(metToken2_, metHOHandle);
const CaloMETCollection &metHO = *metHOHandle;
edm::Handle<CaloMETCollection> metNoHFHandle;
iEvent.getByToken(metToken3_, metNoHFHandle);
const CaloMETCollection &metNoHF = *metNoHFHandle;
edm::Handle<CaloMETCollection> metNoHFHOHandle;
iEvent.getByToken(metToken4_, metNoHFHOHandle);
const CaloMETCollection &metNoHFHO = *metNoHFHOHandle;
// initialize leading jet value and jet multiplicity counter
int njets = 0;
int njets30 = 0;
float leading_jetpt = 0;
float leading_jeteta = 0;
// initialize variables for picking out leading 2 barrel jets
reco::CaloJet leadingbarreljet;
reco::CaloJet secondbarreljet;
int nbarreljets = 0;
// get bins in eta.
// Bins correspond to calotower regions.
const float etabins[83] = {
-5.191, -4.889, -4.716, -4.538, -4.363, -4.191, -4.013, -3.839, -3.664, -3.489, -3.314, -3.139, -2.964, -2.853,
-2.650, -2.500, -2.322, -2.172, -2.043, -1.930, -1.830, -1.740, -1.653, -1.566, -1.479, -1.392, -1.305, -1.218,
-1.131, -1.044, -.957, -.879, -.783, -.696, -.609, -.522, -.435, -.348, -.261, -.174, -.087, 0,
.087, .174, .261, .348, .435, .522, .609, .696, .783, .879, .957, 1.044, 1.131, 1.218,
1.305, 1.392, 1.479, 1.566, 1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.853,
2.964, 3.139, 3.314, 3.489, 3.664, 3.839, 4.013, 4.191, 4.363, 4.538, 4.889, 5.191};
for (jet_iter = jets.begin(); jet_iter != jets.end(); ++jet_iter) {
njets++;
// get Jet stats
float jet_pt = jet_iter->pt();
float jet_eta = jet_iter->eta();
float jet_phi = jet_iter->phi();
// fill jet Pt and jet EMF
MEcontainer_["inclusive_jet_pt"]->Fill(jet_pt);
MEcontainer_["inclusive_jet_EMF"]->Fill(jet_iter->emEnergyFraction());
// pick out up to the first 2 leading barrel jets
// for use in calculating dijet mass in barrel region
// also fill jet Pt histogram for barrel
if (jet_eta <= 1.3) {
MEcontainer_["inclusive_jet_pt_barrel"]->Fill(jet_pt);
if (nbarreljets == 0) {
leadingbarreljet = jets[(njets - 1)];
nbarreljets++;
} else if (nbarreljets == 1) {
secondbarreljet = jets[(njets - 1)];
nbarreljets++;
}
}
// fill jet Pt for endcap and forward regions
else if (jet_eta <= 3.0 && jet_eta > 1.3) {
MEcontainer_["inclusive_jet_pt_endcap"]->Fill(jet_pt);
} else if (jet_eta <= 5.0 && jet_eta > 3.0) {
MEcontainer_["inclusive_jet_pt_forward"]->Fill(jet_pt);
}
// count jet multiplicity for jets with Pt > 30
if ((jet_pt) > 30)
njets30++;
// check leading jet quantities
if (jet_pt > leading_jetpt) {
leading_jetpt = jet_pt;
leading_jeteta = jet_eta;
}
// fill eta-phi plot
for (int eit = 0; eit < 81; eit++) {
for (int pit = 0; pit < 72; pit++) {
float low_eta = etabins[eit];
float high_eta = etabins[eit + 1];
float low_phi = (-M_PI) + pit * (M_PI / 36);
float high_phi = low_phi + (M_PI / 36);
if (jet_eta > low_eta && jet_eta < high_eta && jet_phi > low_phi && jet_phi < high_phi) {
MEcontainer_["etaphi"]->Fill((eit - 41), jet_phi);
}
}
}
}
// after iterating over all jets, fill leading jet quantity histograms
// and jet multiplicity histograms
MEcontainer_["leading_jet_pt"]->Fill(leading_jetpt);
if (leading_jeteta <= 1.3) {
MEcontainer_["leading_jet_pt_barrel"]->Fill(leading_jetpt);
} else if (leading_jeteta <= 3.0 && leading_jeteta > 1.3) {
MEcontainer_["leading_jet_pt_endcap"]->Fill(leading_jetpt);
} else if (leading_jeteta <= 5.0 && leading_jeteta > 3.0) {
MEcontainer_["leading_jet_pt_forward"]->Fill(leading_jetpt);
}
MEcontainer_["njets"]->Fill(njets);
MEcontainer_["njets30"]->Fill(njets30);
// fill MET over Sum ET and Leading jet PT for all MET flavors
MEcontainer_["movers_met"]->Fill(movers(met));
MEcontainer_["moverl_met"]->Fill(movers(met), leading_jetpt);
MEcontainer_["movers_metho"]->Fill(movers(metHO));
MEcontainer_["moverl_metho"]->Fill(movers(metHO), leading_jetpt);
MEcontainer_["movers_metnohf"]->Fill(movers(metNoHF));
MEcontainer_["moverl_metnohf"]->Fill(movers(metNoHF), leading_jetpt);
MEcontainer_["movers_metnohfho"]->Fill(movers(metNoHFHO));
MEcontainer_["moverl_metnohfho"]->Fill(movers(metNoHFHO), leading_jetpt);
// fetch first 3 jet EMF
if (!jets.empty()) {
MEcontainer_["leading_jet_EMF"]->Fill(jets[0].emEnergyFraction());
if (jets.size() >= 2) {
MEcontainer_["second_jet_EMF"]->Fill(jets[1].emEnergyFraction());
if (jets.size() >= 3) {
MEcontainer_["third_jet_EMF"]->Fill(jets[2].emEnergyFraction());
}
}
}
// if 2 nontrivial barrel jets, reconstruct dijet mass
if (nbarreljets == 2) {
if (leadingbarreljet.energy() > 0 && secondbarreljet.energy() > 0) {
math::XYZTLorentzVector DiJet = leadingbarreljet.p4() + secondbarreljet.p4();
float dijet_mass = DiJet.mass();
MEcontainer_["dijet_mass"]->Fill(dijet_mass);
}
}
}
// Local Variables:
// show-trailing-whitespace: t
// truncate-lines: t
// End:
|