1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
#include "DQM/SiStripCommissioningAnalysis/interface/ApvLatencyAlgorithm.h"
#include "CondFormats/SiStripObjects/interface/ApvLatencyAnalysis.h"
#include "DataFormats/SiStripCommon/interface/SiStripHistoTitle.h"
#include "DataFormats/SiStripCommon/interface/SiStripEnumsAndStrings.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "TProfile.h"
#include <iostream>
#include <cmath>
using namespace sistrip;
// ----------------------------------------------------------------------------
//
ApvLatencyAlgorithm::ApvLatencyAlgorithm(const edm::ParameterSet& pset, ApvLatencyAnalysis* const anal)
: CommissioningAlgorithm(anal), histo_(nullptr, "") {
;
}
// ----------------------------------------------------------------------------
//
void ApvLatencyAlgorithm::extract(const std::vector<TH1*>& histos) {
if (!anal()) {
edm::LogWarning(mlCommissioning_) << "[ApvLatencyAlgorithm::" << __func__ << "]"
<< " NULL pointer to Analysis object!";
return;
}
// Check
if (histos.size() != 1) {
anal()->addErrorCode(sistrip::numberOfHistos_);
}
// Extract FED key from histo title
if (!histos.empty()) {
anal()->fedKey(extractFedKey(histos.front()));
}
// Extract histograms
std::vector<TH1*>::const_iterator ihis = histos.begin();
for (; ihis != histos.end(); ihis++) {
// Check for NULL pointer
if (!(*ihis)) {
continue;
}
// Check name
SiStripHistoTitle title((*ihis)->GetName());
if (title.runType() != sistrip::APV_LATENCY) {
anal()->addErrorCode(sistrip::unexpectedTask_);
continue;
}
// Extract timing histo
histo_.first = *ihis;
histo_.second = (*ihis)->GetName();
}
}
// ----------------------------------------------------------------------------
//
void ApvLatencyAlgorithm::analyse() {
if (!anal()) {
edm::LogWarning(mlCommissioning_) << "[ApvLatencyAlgorithm::" << __func__ << "]"
<< " NULL pointer to base Analysis object!";
return;
}
CommissioningAnalysis* tmp = const_cast<CommissioningAnalysis*>(anal());
ApvLatencyAnalysis* anal = dynamic_cast<ApvLatencyAnalysis*>(tmp);
if (!anal) {
edm::LogWarning(mlCommissioning_) << "[ApvLatencyAlgorithm::" << __func__ << "]"
<< " NULL pointer to derived Analysis object!";
return;
}
// was in deprecated()
std::vector<const TProfile*> histos;
std::vector<unsigned short> monitorables;
// was in analysis()
histos.clear();
histos.push_back(const_cast<const TProfile*>(dynamic_cast<TProfile*>(histo_.first)));
if (!histos[0]) {
anal->addErrorCode(sistrip::nullPtr_);
return;
}
monitorables.clear();
//LogDebug("Commissioning|Algorithm") << "[ApvLatencyAlgorithm::analysis]";
//extract root histogram
//check
if (histos.size() != 1) {
// edm::LogWarning("Commissioning|Algorithm") << "[ApvLatencyAlgorithm::analysis]: Requires \"const std::vector<const TH1F*>& \" argument to have size 1. Actual size: " << histos.size() << ". Monitorables set to 0.";
monitorables.push_back(0);
return;
}
const TProfile* histo = histos[0];
//monitorable
unsigned short latency;
std::vector<unsigned short> binContent;
binContent.reserve((unsigned short)histo->GetNbinsX());
binContent.resize((unsigned short)histo->GetNbinsX(), 0);
for (unsigned short k = 0; k < (unsigned short)histo->GetNbinsX(); k++) { // k is bin number
//fill std::vector with histogram contents
binContent.push_back((unsigned int)(histo->GetBinContent(k)));
}
//calculate median
sort(binContent.begin(), binContent.end());
//calculate mean and mean2 of the readout within cutoffs
float meanNoise = 0.; //M.W method
float mean2Noise = 0.;
for (unsigned short k = (unsigned short)(binContent.size() * .1); k < (unsigned short)(binContent.size() * .9); k++) {
meanNoise += binContent[k];
mean2Noise += binContent[k] * binContent[k];
;
}
meanNoise = meanNoise * binContent.size() * 0.8;
mean2Noise = mean2Noise * binContent.size() * 0.8;
float sigmaNoise = sqrt(fabs(meanNoise * meanNoise - mean2Noise));
//loop to look for signal > 5* sigma_noise
unsigned short count = 0;
unsigned short maxlatency = 0;
unsigned int maxhits = 0;
for (unsigned short k = 1; k < ((unsigned short)histo->GetNbinsX() + 1); k++) { // k is bin number
if (histo->GetBinContent((Int_t)k) > maxhits)
maxlatency = k - 1;
if ((float)histo->GetBinContent((Int_t)k) > (meanNoise + 5 * sigmaNoise)) {
latency = k - 1;
count++;
}
}
if (!count) {
// LogDebug("Commissioning|Algorithm") << "[ApvLatencyAlgorithm::analysis]: Warning: no signal found > mean + 5*sigma(noise). Returning latency of highest number of recorded hits.";
latency = maxlatency;
}
if (count > 1) {
// LogDebug("Commissioning|Algorithm") << "[ApvLatencyAlgorithm::analysis]: Warning: more than one signal found > mean + 5*sigma(noise). Returning latency of highest number of recorded hits.";
latency = maxlatency;
}
//set monitorables
monitorables.clear();
monitorables.push_back(latency);
anal->latency_ = monitorables[0];
}
|