Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
#include "DQM/SiStripCommissioningAnalysis/interface/ApvTimingAlgorithm.h"
#include "CondFormats/SiStripObjects/interface/ApvTimingAnalysis.h"
#include "DataFormats/SiStripCommon/interface/SiStripHistoTitle.h"
#include "DataFormats/SiStripCommon/interface/SiStripEnumsAndStrings.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "TProfile.h"
#include "TH1.h"
#include <iostream>
#include <iomanip>
#include <cmath>

using namespace sistrip;

// ----------------------------------------------------------------------------
//
ApvTimingAlgorithm::ApvTimingAlgorithm(const edm::ParameterSet& pset, ApvTimingAnalysis* const anal)
    : CommissioningAlgorithm(anal), histo_(nullptr, "") {
  ;
}

// ----------------------------------------------------------------------------
//
void ApvTimingAlgorithm::extract(const std::vector<TH1*>& histos) {
  if (!anal()) {
    edm::LogWarning(mlCommissioning_) << "[ApvTimingAlgorithm::" << __func__ << "]"
                                      << " NULL pointer to Analysis object!";
    return;
  }

  // Check number of histograms
  if (histos.size() != 1) {
    anal()->addErrorCode(sistrip::numberOfHistos_);
  }

  // Extract FED key from histo title
  if (!histos.empty()) {
    anal()->fedKey(extractFedKey(histos.front()));
  }

  // Extract histograms
  std::vector<TH1*>::const_iterator ihis = histos.begin();
  for (; ihis != histos.end(); ihis++) {
    // Check for NULL pointer
    if (!(*ihis)) {
      continue;
    }

    // Check name
    SiStripHistoTitle title((*ihis)->GetName());
    if (title.runType() != sistrip::APV_TIMING) {
      anal()->addErrorCode(sistrip::unexpectedTask_);
      continue;
    }

    // Extract timing histo
    histo_.first = *ihis;
    histo_.second = (*ihis)->GetName();
  }
}

// ----------------------------------------------------------------------------
//
void ApvTimingAlgorithm::analyse() {
  if (!anal()) {
    edm::LogWarning(mlCommissioning_) << "[ApvTimingAlgorithm::" << __func__ << "]"
                                      << " NULL pointer to base Analysis object!";
    return;
  }

  CommissioningAnalysis* tmp = const_cast<CommissioningAnalysis*>(anal());
  ApvTimingAnalysis* anal = dynamic_cast<ApvTimingAnalysis*>(tmp);
  if (!anal) {
    edm::LogWarning(mlCommissioning_) << "[ApvTimingAlgorithm::" << __func__ << "]"
                                      << " NULL pointer to derived Analysis object!";
    return;
  }

  if (!histo_.first) {
    anal->addErrorCode(sistrip::nullPtr_);
    return;
  }

  TProfile* histo = dynamic_cast<TProfile*>(histo_.first);
  if (!histo) {
    anal->addErrorCode(sistrip::nullPtr_);
    return;
  }

  // Transfer histogram contents/errors/stats to containers
  float max = -1. * sistrip::invalid_;
  float min = 1. * sistrip::invalid_;
  uint16_t nbins = static_cast<uint16_t>(histo->GetNbinsX());
  std::vector<float> bin_contents;
  std::vector<float> bin_errors;
  std::vector<float> bin_entries;
  bin_contents.reserve(nbins);
  bin_errors.reserve(nbins);
  bin_entries.reserve(nbins);
  for (uint16_t ibin = 0; ibin < nbins; ibin++) {
    bin_contents.push_back(histo->GetBinContent(ibin + 1));
    bin_errors.push_back(histo->GetBinError(ibin + 1));
    bin_entries.push_back(histo->GetBinEntries(ibin + 1));
    if (bin_entries[ibin]) {
      if (bin_contents[ibin] > max) {
        max = bin_contents[ibin];
      }
      if (bin_contents[ibin] < min) {
        min = bin_contents[ibin];
      }
    }
  }
  if (bin_contents.size() < 100) {
    anal->addErrorCode(sistrip::numberOfBins_);
    return;
  }

  // Calculate range (max-min) and threshold level (range/2)
  float threshold = min + (max - min) / 2.;
  anal->base_ = min;
  anal->peak_ = max;
  anal->height_ = max - min;
  if (max - min < ApvTimingAnalysis::tickMarkHeightThreshold_) {
    anal->addErrorCode(sistrip::smallDataRange_);
    return;
  }

  // Associate samples with either "tick mark" or "baseline"
  std::vector<float> tick;
  std::vector<float> base;
  for (uint16_t ibin = 0; ibin < nbins; ibin++) {
    if (bin_entries[ibin]) {
      if (bin_contents[ibin] < threshold) {
        base.push_back(bin_contents[ibin]);
      } else {
        tick.push_back(bin_contents[ibin]);
      }
    }
  }

  // Find median level of tick mark and baseline
  float tickmark = 0.;
  float baseline = 0.;
  sort(tick.begin(), tick.end());
  sort(base.begin(), base.end());
  if (!tick.empty()) {
    tickmark = tick[tick.size() % 2 ? tick.size() / 2 : tick.size() / 2];
  }
  if (!base.empty()) {
    baseline = base[base.size() % 2 ? base.size() / 2 : base.size() / 2];
  }
  anal->base_ = baseline;
  anal->peak_ = tickmark;
  anal->height_ = tickmark - baseline;
  if (tickmark - baseline < ApvTimingAnalysis::tickMarkHeightThreshold_) {
    anal->addErrorCode(sistrip::smallTickMarkHeight_);
    return;
  }

  // Find rms spread in "baseline" samples
  float mean = 0.;
  float mean2 = 0.;
  for (uint16_t ibin = 0; ibin < base.size(); ibin++) {
    mean += base[ibin];
    mean2 += base[ibin] * base[ibin];
  }
  if (!base.empty()) {
    mean = mean / base.size();
    mean2 = mean2 / base.size();
  } else {
    mean = 0.;
    mean2 = 0.;
  }
  float baseline_rms = sqrt(fabs(mean2 - mean * mean));

  // Find rising edges (derivative across two bins > threshold)
  std::map<uint16_t, float> edges;
  for (uint16_t ibin = 1; ibin < nbins - 1; ibin++) {
    if (bin_entries[ibin + 1] && bin_entries[ibin - 1]) {
      float derivative = bin_contents[ibin + 1] - bin_contents[ibin - 1];
      if (derivative > 3. * baseline_rms) {
        edges[ibin] = derivative;
      }
    }
  }
  if (edges.empty()) {
    anal->addErrorCode(sistrip::noRisingEdges_);
    return;
  }

  // Iterate through "edges" map
  uint16_t max_derivative_bin = sistrip::invalid_;
  float max_derivative = -1. * sistrip::invalid_;

  bool found = false;
  std::map<uint16_t, float>::iterator iter = edges.begin();
  while (!found && iter != edges.end()) {
    // Iterate through 50 subsequent samples
    bool valid = true;
    for (uint16_t ii = 0; ii < 50; ii++) {
      uint16_t bin = iter->first + ii;

      // Calc local derivative
      float temp = 0.;
      if (static_cast<uint32_t>(bin) < 1 || static_cast<uint32_t>(bin + 1) >= nbins) {
        valid = false;  //@@ require complete plateau is found within histo
        anal->addErrorCode(sistrip::incompletePlateau_);
        continue;
      }
      temp = bin_contents[bin + 1] - bin_contents[bin - 1];

      // Store max derivative
      if (temp > max_derivative) {
        max_derivative = temp;
        max_derivative_bin = bin;
      }

      // Check if samples following edge are all "high"
      if (ii > 10 && ii < 40 && bin_entries[bin] && bin_contents[bin] < baseline + 5. * baseline_rms) {
        valid = false;
      }
    }

    // Break from loop if tick mark found
    if (valid) {
      found = true;
    }

    /*
    else {
      max_derivative = -1.*sistrip::invalid_;
      max_derivative_bin = sistrip::invalid_;
      //edges.erase(iter);
      anal->addErrorCode(sistrip::rejectedCandidate_);
    }
    */

    iter++;  // next candidate
  }

  if (!found) {  //Try tick mark recovery

    max_derivative_bin = sistrip::invalid_;

    // Find rising edges_r (derivative_r across five bins > threshold)
    std::map<uint16_t, float> edges_r;
    for (uint16_t ibin_r = 1; ibin_r < nbins - 1; ibin_r++) {
      if (bin_entries[ibin_r + 4] && bin_entries[ibin_r + 3] && bin_entries[ibin_r + 2] && bin_entries[ibin_r + 1] &&
          bin_entries[ibin_r] && bin_entries[ibin_r - 1]) {
        float derivative_r = bin_contents[ibin_r + 1] - bin_contents[ibin_r - 1];
        float derivative_r1 = bin_contents[ibin_r + 1] - bin_contents[ibin_r];
        float derivative_r2 = bin_contents[ibin_r + 2] - bin_contents[ibin_r + 1];
        float derivative_r3 = bin_contents[ibin_r + 3] - bin_contents[ibin_r + 2];

        if (derivative_r > 3. * baseline_rms && derivative_r1 > 1. * baseline_rms &&
            derivative_r2 > 1. * baseline_rms && derivative_r3 > 1. * baseline_rms) {
          edges_r[ibin_r] = derivative_r;
        }
      }
    }
    if (edges_r.empty()) {
      anal->addErrorCode(sistrip::noRisingEdges_);
      return;
    }

    // Iterate through "edges_r" map
    float max_derivative_r = -1. * sistrip::invalid_;

    bool found_r = false;
    std::map<uint16_t, float>::iterator iter_r = edges_r.begin();
    while (!found_r && iter_r != edges_r.end()) {
      // Iterate through 50 subsequent samples
      bool valid_r = true;
      int lowpointcount_r = 0;
      const int lowpointallow_r = 25;  //Number of points allowed to fall below threshhold w/o invalidating tick mark
      for (uint16_t ii_r = 0; ii_r < 50; ii_r++) {
        uint16_t bin_r = iter_r->first + ii_r;

        // Calc local derivative_r
        float temp_r = 0.;
        if (static_cast<uint32_t>(bin_r) < 1 || static_cast<uint32_t>(bin_r + 1) >= nbins) {
          valid_r = false;  //@@ require complete plateau is found_r within histo
          anal->addErrorCode(sistrip::incompletePlateau_);
          continue;
        }
        temp_r = bin_contents[bin_r + 1] - bin_contents[bin_r - 1];

        // Store max derivative_r
        if (temp_r > max_derivative_r && ii_r < 10) {
          max_derivative_r = temp_r;
          max_derivative_bin = bin_r;
        }

        // Check if majority of samples following edge are all "high"
        if (ii_r > 10 && ii_r < 40 && bin_entries[bin_r] && bin_contents[bin_r] < baseline + 5. * baseline_rms) {
          lowpointcount_r++;
          if (lowpointcount_r > lowpointallow_r) {
            valid_r = false;
          }
        }
      }

      // Break from loop if recovery tick mark found
      if (valid_r) {
        found_r = true;
        anal->addErrorCode(sistrip::tickMarkRecovered_);
      } else {
        max_derivative_r = -1. * sistrip::invalid_;
        max_derivative_bin = sistrip::invalid_;
        //edges_r.erase(iter_r);
        anal->addErrorCode(sistrip::rejectedCandidate_);
      }

      iter_r++;  // next candidate
    }
  }  //End tick mark recovery

  // Record time monitorable and check tick mark height
  if (max_derivative_bin <= sistrip::valid_) {
    anal->time_ = max_derivative_bin * 25. / 24.;
    if (anal->height_ < ApvTimingAnalysis::tickMarkHeightThreshold_) {
      anal->addErrorCode(sistrip::tickMarkBelowThresh_);
    }
  } else {
    anal->addErrorCode(sistrip::missingTickMark_);
  }
}