Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
#include "DQM/SiStripCommissioningAnalysis/interface/CalibrationAlgorithm.h"
#include "CondFormats/SiStripObjects/interface/CalibrationAnalysis.h"
#include "DataFormats/SiStripCommon/interface/SiStripHistoTitle.h"
#include "DataFormats/SiStripCommon/interface/SiStripEnumsAndStrings.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "DQM/SiStripCommissioningAnalysis/interface/SiStripPulseShape.h"
#include "TProfile.h"
#include "TF1.h"
#include "TH1.h"
#include "TVirtualFitter.h"
#include "TFitResultPtr.h"
#include "TFitResult.h"
#include <iostream>
#include <sstream>
#include <iomanip>
#include <cmath>
#include "Math/MinimizerOptions.h"

using namespace sistrip;

// ----------------------------------------------------------------------------
//
CalibrationAlgorithm::CalibrationAlgorithm(const edm::ParameterSet& pset, CalibrationAnalysis* const anal)
    : CommissioningAlgorithm(anal), cal_(nullptr) {}

// ----------------------------------------------------------------------------
//
void CalibrationAlgorithm::extract(const std::vector<TH1*>& histos) {
  // extract analysis object which should be already created
  if (!anal()) {
    edm::LogWarning(mlCommissioning_) << "[CalibrationAlgorithm::" << __func__ << "]"
                                      << " NULL pointer to base Analysis object!";
    return;
  }

  CommissioningAnalysis* tmp = const_cast<CommissioningAnalysis*>(anal());
  cal_ = dynamic_cast<CalibrationAnalysis*>(tmp);

  if (!cal_) {
    edm::LogWarning(mlCommissioning_) << "[CalibrationAlgorithm::" << __func__ << "]"
                                      << " NULL pointer to derived Analysis object!";
    return;
  }

  // Extract FED key from histo title
  if (!histos.empty()) {
    cal_->fedKey(extractFedKey(histos.front()));
  }

  // Extract histograms
  std::vector<TH1*>::const_iterator ihis = histos.begin();
  unsigned int cnt = 0;
  for (; ihis != histos.end(); ihis++, cnt++) {
    // Check for NULL pointer
    if (!(*ihis)) {
      continue;
    }

    // Check name
    SiStripHistoTitle title((*ihis)->GetName());
    if (title.runType() != sistrip::CALIBRATION && title.runType() != sistrip::CALIBRATION_DECO) {
      cal_->addErrorCode(sistrip::unexpectedTask_);
      continue;
    }

    /// extract isha, vfs and calchan values, as well as filling the histogram objects
    std::vector<std::string> tokens;
    std::string token;
    std::istringstream tokenStream(title.extraInfo());
    while (std::getline(tokenStream, token, '_')) {
      tokens.push_back(token);
    }

    ////////
    Histo histo_temp;
    histo_temp.first = *ihis;
    histo_temp.second = (*ihis)->GetTitle();
    histo_temp.first->Sumw2();
    histo_.push_back(histo_temp);
    apvId_.push_back(title.channel() % 2);
    stripId_.push_back(std::stoi(tokens.at(1)) * 16 + std::stoi(tokens.at(3)));
    calChan_.push_back(std::stoi(tokens.at(1)));
  }
}

// ----------------------------------------------------------------------------
//
void CalibrationAlgorithm::analyse() {
  ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2", "Migrad");
  ROOT::Math::MinimizerOptions::SetDefaultStrategy(0);

  if (!cal_) {
    edm::LogWarning(mlCommissioning_) << "[CalibrationAlgorithm::" << __func__ << "]"
                                      << " NULL pointer to derived Analysis object!";
    return;
  }

  float Amean[2] = {-1., -1.};
  float Amin[2] = {-1., -1.};
  float Amax[2] = {-1., -1.};
  float Aspread[2] = {-1., -1.};
  float Tmean[2] = {-1., -1.};
  float Tmin[2] = {-1., -1.};
  float Tmax[2] = {-1., -1.};
  float Tspread[2] = {-1., -1.};
  float Rmean[2] = {-1., -1.};
  float Rmin[2] = {-1., -1.};
  float Rmax[2] = {-1., -1.};
  float Rspread[2] = {-1., -1.};
  float Cmean[2] = {-1., -1.};
  float Cmin[2] = {-1., -1.};
  float Cmax[2] = {-1., -1.};
  float Cspread[2] = {-1., -1.};
  float Smean[2] = {-1., -1.};
  float Smin[2] = {-1., -1.};
  float Smax[2] = {-1., -1.};
  float Sspread[2] = {-1., -1.};
  float Kmean[2] = {-1., -1.};
  float Kmin[2] = {-1., -1.};
  float Kmax[2] = {-1., -1.};
  float Kspread[2] = {-1., -1.};
  // turnOn
  float Omean[2] = {-1., -1.};
  float Omin[2] = {-1., -1.};
  float Omax[2] = {-1., -1.};
  float Ospread[2] = {-1., -1.};
  // maximum
  float Mmean[2] = {-1., -1.};
  float Mmin[2] = {-1., -1.};
  float Mmax[2] = {-1., -1.};
  float Mspread[2] = {-1., -1.};
  // undershoot
  float Umean[2] = {-1., -1.};
  float Umin[2] = {-1., -1.};
  float Umax[2] = {-1., -1.};
  float Uspread[2] = {-1., -1.};
  // baseline
  float Bmean[2] = {-1., -1.};
  float Bmin[2] = {-1., -1.};
  float Bmax[2] = {-1., -1.};
  float Bspread[2] = {-1., -1.};

  ////////
  TFitResultPtr fit_result;
  TF1* fit_function = nullptr;
  if (cal_->deconv_) {
    fit_function = new TF1("fit_function_deco", fdeconv, 0, 400, 7);
    fit_function->SetParameters(4, 25, 25, 50, 250, 25, 0.75);
  } else {
    fit_function = new TF1("fit_function_peak", fpeak, 0, 400, 6);
    fit_function->SetParameters(4, 50, 50, 70, 250, 20);
  }

  //////////
  std::vector<unsigned int> nStrips(2, 0.);

  for (size_t ihist = 0; ihist < histo_.size(); ihist++) {
    if (!histo_[ihist].first) {
      edm::LogWarning(mlCommissioning_) << " NULL pointer to histogram for: " << histo_[ihist].second << " !";
      return;
    }

    cal_->amplitude_[apvId_[ihist]][stripId_[ihist]] = 0;
    cal_->baseline_[apvId_[ihist]][stripId_[ihist]] = 0;
    cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] = 0;
    cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] = 0;
    cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] = 0;
    cal_->undershoot_[apvId_[ihist]][stripId_[ihist]] = 0;
    cal_->tail_[apvId_[ihist]][stripId_[ihist]] = 0;
    cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] = 0;
    cal_->smearing_[apvId_[ihist]][stripId_[ihist]] = 0;
    cal_->chi2_[apvId_[ihist]][stripId_[ihist]] = 0;
    cal_->isvalid_[apvId_[ihist]][stripId_[ihist]] = true;

    if (histo_[ihist].first->Integral() == 0) {
      cal_->isvalid_[apvId_[ihist]][stripId_[ihist]] = false;
      continue;
    }

    // rescale the plot and set reasonable errors
    correctDistribution(histo_[ihist].first);

    // from NOTE2009_021 : The charge injection provided by the calibration circuit is known with a precision of 5%
    float error = histo_[ihist].first->GetMaximum() * 0.05;
    for (int i = 1; i <= histo_[ihist].first->GetNbinsX(); ++i)
      histo_[ihist].first->SetBinError(i, error);

    // set intial par
    if (cal_->deconv_)
      fit_function->SetParameters(10, 15, 30, 10, 350, 50, 0.75);
    else
      fit_function->SetParameters(6, 40, 40, 70, 350, 20);

    fit_result = histo_[ihist].first->Fit(fit_function, "QS");

    // fit-result should exist and have a resonably good status
    if (not fit_result.Get())
      continue;

    float maximum_ampl = fit_function->GetMaximum();
    float peak_time = fit_function->GetMaximumX();
    float baseline = baseLine(fit_function);
    float turn_on_time = turnOn(fit_function, baseline);
    float rise_time = peak_time - turn_on_time;

    // start filling info
    cal_->amplitude_[apvId_[ihist]][stripId_[ihist]] = maximum_ampl - baseline;
    cal_->baseline_[apvId_[ihist]][stripId_[ihist]] = baseline;
    cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] = rise_time;
    cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] = turn_on_time;
    cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] = peak_time;

    if (cal_->deconv_ and fit_function->GetMinimumX() > peak_time)  // make sure the minimum is after the peak-time
      cal_->undershoot_[apvId_[ihist]][stripId_[ihist]] =
          100 * (fit_function->GetMinimum() - baseline) / (maximum_ampl - baseline);
    else
      cal_->undershoot_[apvId_[ihist]][stripId_[ihist]] = 0;

    // Bin related to peak + 125 ns
    int lastBin = histo_[ihist].first->FindBin(peak_time + 125);
    if (lastBin > histo_[ihist].first->GetNbinsX() - 4)
      lastBin = histo_[ihist].first->GetNbinsX() - 4;

    // tail is the amplitude at 5 bx from the maximum
    cal_->tail_[apvId_[ihist]][stripId_[ihist]] =
        100 * (histo_[ihist].first->GetBinContent(lastBin) - baseline) / (maximum_ampl - baseline);

    // reaches 1/e of the peak amplitude
    cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] = decayTime(fit_function) - peak_time;
    cal_->smearing_[apvId_[ihist]][stripId_[ihist]] = 0;
    cal_->chi2_[apvId_[ihist]][stripId_[ihist]] =
        fit_function->GetChisquare() / (histo_[ihist].first->GetNbinsX() - fit_function->GetNpar());

    // calibration channel
    cal_->calChan_ = calChan_[ihist];

    // apply quality requirements
    bool isvalid = true;
    if (not cal_->deconv_) {  // peak-mode

      if (cal_->amplitude_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minAmplitudeThreshold_)
        isvalid = false;
      if (cal_->baseline_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minBaselineThreshold_)
        isvalid = false;
      else if (cal_->baseline_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxBaselineThreshold_)
        isvalid = false;
      if (cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minDecayTimeThreshold_)
        isvalid = false;
      else if (cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxDecayTimeThreshold_)
        isvalid = false;
      if (cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minPeakTimeThreshold_)
        isvalid = false;
      else if (cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxPeakTimeThreshold_)
        isvalid = false;
      if (cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minRiseTimeThreshold_)
        isvalid = false;
      else if (cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxRiseTimeThreshold_)
        isvalid = false;
      if (cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minTurnOnThreshold_)
        isvalid = false;
      else if (cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxTurnOnThreshold_)
        isvalid = false;
      if (cal_->chi2_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxChi2Threshold_)
        isvalid = false;

    } else {
      if (fit_function->GetMinimumX() < peak_time)
        isvalid = false;
      if (cal_->amplitude_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minAmplitudeThreshold_)
        isvalid = false;
      if (cal_->baseline_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minBaselineThreshold_)
        isvalid = false;
      if (cal_->baseline_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minBaselineThreshold_)
        isvalid = false;
      else if (cal_->baseline_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxBaselineThreshold_)
        isvalid = false;
      if (cal_->chi2_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxChi2Threshold_)
        isvalid = false;
      if (cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minTurnOnThresholdDeco_)
        isvalid = false;
      else if (cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxTurnOnThresholdDeco_)
        isvalid = false;
      if (cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minDecayTimeThresholdDeco_)
        isvalid = false;
      else if (cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxDecayTimeThresholdDeco_)
        isvalid = false;
      if (cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minPeakTimeThresholdDeco_)
        isvalid = false;
      else if (cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxPeakTimeThresholdDeco_)
        isvalid = false;
      if (cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minRiseTimeThresholdDeco_)
        isvalid = false;
      else if (cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxRiseTimeThresholdDeco_)
        isvalid = false;
    }

    if (not isvalid) {  // not valid set default to zero for all quantities

      cal_->amplitude_[apvId_[ihist]][stripId_[ihist]] = 0;
      cal_->baseline_[apvId_[ihist]][stripId_[ihist]] = 0;
      cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] = 0;
      cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] = 0;
      cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] = 0;
      cal_->undershoot_[apvId_[ihist]][stripId_[ihist]] = 0;
      cal_->tail_[apvId_[ihist]][stripId_[ihist]] = 0;
      cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] = 0;
      cal_->smearing_[apvId_[ihist]][stripId_[ihist]] = 0;
      cal_->chi2_[apvId_[ihist]][stripId_[ihist]] = 0;
      cal_->isvalid_[apvId_[ihist]][stripId_[ihist]] = false;
      continue;
    }

    // in case is valid
    nStrips[apvId_[ihist]]++;

    //compute mean, max, min, spread only for valid strips
    Amean[apvId_[ihist]] += cal_->amplitude_[apvId_[ihist]][stripId_[ihist]];
    Amin[apvId_[ihist]] = Amin[apvId_[ihist]] < cal_->amplitude_[apvId_[ihist]][stripId_[ihist]]
                              ? Amin[apvId_[ihist]]
                              : cal_->amplitude_[apvId_[ihist]][stripId_[ihist]];
    Amax[apvId_[ihist]] = Amax[apvId_[ihist]] > cal_->amplitude_[apvId_[ihist]][stripId_[ihist]]
                              ? Amax[apvId_[ihist]]
                              : cal_->amplitude_[apvId_[ihist]][stripId_[ihist]];
    Aspread[apvId_[ihist]] +=
        cal_->amplitude_[apvId_[ihist]][stripId_[ihist]] * cal_->amplitude_[apvId_[ihist]][stripId_[ihist]];

    Tmean[apvId_[ihist]] += cal_->tail_[apvId_[ihist]][stripId_[ihist]];
    Tmin[apvId_[ihist]] = Tmin[apvId_[ihist]] < cal_->tail_[apvId_[ihist]][stripId_[ihist]]
                              ? Tmin[apvId_[ihist]]
                              : cal_->tail_[apvId_[ihist]][stripId_[ihist]];
    Tmax[apvId_[ihist]] = Tmax[apvId_[ihist]] > cal_->tail_[apvId_[ihist]][stripId_[ihist]]
                              ? Tmax[apvId_[ihist]]
                              : cal_->tail_[apvId_[ihist]][stripId_[ihist]];
    Tspread[apvId_[ihist]] += cal_->tail_[apvId_[ihist]][stripId_[ihist]] * cal_->tail_[apvId_[ihist]][stripId_[ihist]];

    Rmean[apvId_[ihist]] += cal_->riseTime_[apvId_[ihist]][stripId_[ihist]];
    Rmin[apvId_[ihist]] = Rmin[apvId_[ihist]] < cal_->riseTime_[apvId_[ihist]][stripId_[ihist]]
                              ? Rmin[apvId_[ihist]]
                              : cal_->riseTime_[apvId_[ihist]][stripId_[ihist]];
    Rmax[apvId_[ihist]] = Rmax[apvId_[ihist]] > cal_->riseTime_[apvId_[ihist]][stripId_[ihist]]
                              ? Rmax[apvId_[ihist]]
                              : cal_->riseTime_[apvId_[ihist]][stripId_[ihist]];
    Rspread[apvId_[ihist]] +=
        cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] * cal_->riseTime_[apvId_[ihist]][stripId_[ihist]];

    Cmean[apvId_[ihist]] += cal_->decayTime_[apvId_[ihist]][stripId_[ihist]];
    Cmin[apvId_[ihist]] = Cmin[apvId_[ihist]] < cal_->decayTime_[apvId_[ihist]][stripId_[ihist]]
                              ? Cmin[apvId_[ihist]]
                              : cal_->decayTime_[apvId_[ihist]][stripId_[ihist]];
    Cmax[apvId_[ihist]] = Cmax[apvId_[ihist]] > cal_->decayTime_[apvId_[ihist]][stripId_[ihist]]
                              ? Cmax[apvId_[ihist]]
                              : cal_->decayTime_[apvId_[ihist]][stripId_[ihist]];
    Cspread[apvId_[ihist]] +=
        cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] * cal_->decayTime_[apvId_[ihist]][stripId_[ihist]];

    Smean[apvId_[ihist]] += cal_->smearing_[apvId_[ihist]][stripId_[ihist]];
    Smin[apvId_[ihist]] = Smin[apvId_[ihist]] < cal_->smearing_[apvId_[ihist]][stripId_[ihist]]
                              ? Smin[apvId_[ihist]]
                              : cal_->smearing_[apvId_[ihist]][stripId_[ihist]];
    Smax[apvId_[ihist]] = Smax[apvId_[ihist]] > cal_->smearing_[apvId_[ihist]][stripId_[ihist]]
                              ? Smax[apvId_[ihist]]
                              : cal_->smearing_[apvId_[ihist]][stripId_[ihist]];
    Sspread[apvId_[ihist]] +=
        cal_->smearing_[apvId_[ihist]][stripId_[ihist]] * cal_->smearing_[apvId_[ihist]][stripId_[ihist]];

    Kmean[apvId_[ihist]] += cal_->chi2_[apvId_[ihist]][stripId_[ihist]];
    Kmin[apvId_[ihist]] = Kmin[apvId_[ihist]] < cal_->chi2_[apvId_[ihist]][stripId_[ihist]]
                              ? Kmin[apvId_[ihist]]
                              : cal_->chi2_[apvId_[ihist]][stripId_[ihist]];
    Kmax[apvId_[ihist]] = Kmax[apvId_[ihist]] > cal_->chi2_[apvId_[ihist]][stripId_[ihist]]
                              ? Kmax[apvId_[ihist]]
                              : cal_->chi2_[apvId_[ihist]][stripId_[ihist]];
    Kspread[apvId_[ihist]] += cal_->chi2_[apvId_[ihist]][stripId_[ihist]] * cal_->chi2_[apvId_[ihist]][stripId_[ihist]];

    Omean[apvId_[ihist]] += cal_->turnOn_[apvId_[ihist]][stripId_[ihist]];
    Omin[apvId_[ihist]] = Omin[apvId_[ihist]] < cal_->turnOn_[apvId_[ihist]][stripId_[ihist]]
                              ? Omin[apvId_[ihist]]
                              : cal_->turnOn_[apvId_[ihist]][stripId_[ihist]];
    Omax[apvId_[ihist]] = Omax[apvId_[ihist]] > cal_->turnOn_[apvId_[ihist]][stripId_[ihist]]
                              ? Omax[apvId_[ihist]]
                              : cal_->turnOn_[apvId_[ihist]][stripId_[ihist]];
    Ospread[apvId_[ihist]] +=
        cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] * cal_->turnOn_[apvId_[ihist]][stripId_[ihist]];

    Mmean[apvId_[ihist]] += cal_->peakTime_[apvId_[ihist]][stripId_[ihist]];
    Mmin[apvId_[ihist]] = Mmin[apvId_[ihist]] < cal_->peakTime_[apvId_[ihist]][stripId_[ihist]]
                              ? Mmin[apvId_[ihist]]
                              : cal_->peakTime_[apvId_[ihist]][stripId_[ihist]];
    Mmax[apvId_[ihist]] = Mmax[apvId_[ihist]] > cal_->peakTime_[apvId_[ihist]][stripId_[ihist]]
                              ? Mmax[apvId_[ihist]]
                              : cal_->peakTime_[apvId_[ihist]][stripId_[ihist]];
    Mspread[apvId_[ihist]] +=
        cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] * cal_->peakTime_[apvId_[ihist]][stripId_[ihist]];

    Umean[apvId_[ihist]] += cal_->undershoot_[apvId_[ihist]][stripId_[ihist]];
    Umin[apvId_[ihist]] = Umin[apvId_[ihist]] < cal_->undershoot_[apvId_[ihist]][stripId_[ihist]]
                              ? Umin[apvId_[ihist]]
                              : cal_->undershoot_[apvId_[ihist]][stripId_[ihist]];
    Umax[apvId_[ihist]] = Umax[apvId_[ihist]] > cal_->undershoot_[apvId_[ihist]][stripId_[ihist]]
                              ? Umax[apvId_[ihist]]
                              : cal_->undershoot_[apvId_[ihist]][stripId_[ihist]];
    Uspread[apvId_[ihist]] +=
        cal_->undershoot_[apvId_[ihist]][stripId_[ihist]] * cal_->undershoot_[apvId_[ihist]][stripId_[ihist]];

    Bmean[apvId_[ihist]] += cal_->baseline_[apvId_[ihist]][stripId_[ihist]];
    Bmin[apvId_[ihist]] = Bmin[apvId_[ihist]] < cal_->baseline_[apvId_[ihist]][stripId_[ihist]]
                              ? Bmin[apvId_[ihist]]
                              : cal_->baseline_[apvId_[ihist]][stripId_[ihist]];
    Bmax[apvId_[ihist]] = Bmax[apvId_[ihist]] > cal_->baseline_[apvId_[ihist]][stripId_[ihist]]
                              ? Bmax[apvId_[ihist]]
                              : cal_->baseline_[apvId_[ihist]][stripId_[ihist]];
    Bspread[apvId_[ihist]] +=
        cal_->baseline_[apvId_[ihist]][stripId_[ihist]] * cal_->baseline_[apvId_[ihist]][stripId_[ihist]];
  }

  // make mean values
  for (int i = 0; i < 2; i++) {
    if (nStrips[i] != 0) {
      Amean[i] = Amean[i] / nStrips[i];
      Tmean[i] = Tmean[i] / nStrips[i];
      Rmean[i] = Rmean[i] / nStrips[i];
      Cmean[i] = Cmean[i] / nStrips[i];
      Omean[i] = Omean[i] / nStrips[i];
      Mmean[i] = Mmean[i] / nStrips[i];
      Umean[i] = Umean[i] / nStrips[i];
      Bmean[i] = Bmean[i] / nStrips[i];
      Smean[i] = Smean[i] / nStrips[i];
      Kmean[i] = Kmean[i] / nStrips[i];

      Aspread[i] = Aspread[i] / nStrips[i];
      Tspread[i] = Tspread[i] / nStrips[i];
      Rspread[i] = Rspread[i] / nStrips[i];
      Cspread[i] = Cspread[i] / nStrips[i];
      Ospread[i] = Ospread[i] / nStrips[i];
      Mspread[i] = Mspread[i] / nStrips[i];
      Uspread[i] = Uspread[i] / nStrips[i];
      Bspread[i] = Bspread[i] / nStrips[i];
      Sspread[i] = Sspread[i] / nStrips[i];
      Kspread[i] = Kspread[i] / nStrips[i];
    }
  }

  // fill the mean, max, min, spread, ... histograms.
  for (int i = 0; i < 2; ++i) {
    cal_->mean_amplitude_[i] = Amean[i];
    cal_->mean_tail_[i] = Tmean[i];
    cal_->mean_riseTime_[i] = Rmean[i];
    cal_->mean_decayTime_[i] = Cmean[i];
    cal_->mean_turnOn_[i] = Omean[i];
    cal_->mean_peakTime_[i] = Mmean[i];
    cal_->mean_undershoot_[i] = Umean[i];
    cal_->mean_baseline_[i] = Bmean[i];
    cal_->mean_smearing_[i] = Smean[i];
    cal_->mean_chi2_[i] = Kmean[i];

    cal_->min_amplitude_[i] = Amin[i];
    cal_->min_tail_[i] = Tmin[i];
    cal_->min_riseTime_[i] = Rmin[i];
    cal_->min_decayTime_[i] = Cmin[i];
    cal_->min_turnOn_[i] = Omin[i];
    cal_->min_peakTime_[i] = Mmin[i];
    cal_->min_undershoot_[i] = Umin[i];
    cal_->min_baseline_[i] = Bmin[i];
    cal_->min_smearing_[i] = Smin[i];
    cal_->min_chi2_[i] = Kmin[i];

    cal_->max_amplitude_[i] = Amax[i];
    cal_->max_tail_[i] = Tmax[i];
    cal_->max_riseTime_[i] = Rmax[i];
    cal_->max_decayTime_[i] = Cmax[i];
    cal_->max_turnOn_[i] = Omax[i];
    cal_->max_peakTime_[i] = Mmax[i];
    cal_->max_undershoot_[i] = Umax[i];
    cal_->max_baseline_[i] = Bmax[i];
    cal_->max_smearing_[i] = Smax[i];
    cal_->max_chi2_[i] = Kmax[i];

    cal_->spread_amplitude_[i] = sqrt(fabs(Aspread[i] - Amean[i] * Amean[i]));
    cal_->spread_tail_[i] = sqrt(fabs(Tspread[i] - Tmean[i] * Tmean[i]));
    cal_->spread_riseTime_[i] = sqrt(fabs(Rspread[i] - Rmean[i] * Rmean[i]));
    cal_->spread_decayTime_[i] = sqrt(fabs(Cspread[i] - Cmean[i] * Cmean[i]));
    cal_->spread_turnOn_[i] = sqrt(fabs(Ospread[i] - Omean[i] * Omean[i]));
    cal_->spread_peakTime_[i] = sqrt(fabs(Mspread[i] - Mmean[i] * Mmean[i]));
    cal_->spread_undershoot_[i] = sqrt(fabs(Uspread[i] - Umean[i] * Umean[i]));
    cal_->spread_baseline_[i] = sqrt(fabs(Bspread[i] - Bmean[i] * Bmean[i]));
    cal_->spread_smearing_[i] = sqrt(fabs(Sspread[i] - Smean[i] * Smean[i]));
    cal_->spread_chi2_[i] = sqrt(fabs(Kspread[i] - Kmean[i] * Kmean[i]));
  }

  if (fit_function)
    delete fit_function;
}

// ------
void CalibrationAlgorithm::correctDistribution(TH1* histo) const {
  // 20 events per point in the TM loop  --> divide by 20 to have the amplitude of a single event readout
  for (int iBin = 0; iBin < histo->GetNbinsX(); iBin++) {
    histo->SetBinContent(iBin + 1, -histo->GetBinContent(iBin + 1) / 20.);
  }
}

// ----------------------------------------------------------------------------
float CalibrationAlgorithm::baseLine(TF1* f) {
  float xmax = 10;
  float baseline = 0;
  int npoints = 0;
  float x = f->GetXmin();
  for (; x < xmax; x += 0.1) {
    baseline += f->Eval(x);
    npoints++;
  }
  return baseline / npoints;
}

// ----------------------------------------------------------------------------
float CalibrationAlgorithm::turnOn(TF1* f,
                                   const float& baseline) {  // should happen within 100 ns in both deco and peak modes
  float max_amplitude = f->GetMaximum();
  float time = 10.;
  for (; time < 100 && (f->Eval(time) - baseline) < 0.05 * (max_amplitude - baseline); time += 0.1) {
  }  // flucutation higher than 5% of the pulse height
  return time;
}

// ----------------------------------------------------------------------------
float CalibrationAlgorithm::decayTime(
    TF1* f) {  // if we approximate the decay to an exp(-t/tau), in one constant unit, the amplited is reduced by e^{-1}
  float xval = f->GetMaximumX();
  float max_amplitude = f->GetMaximum();
  float x = xval;
  for (; x < 1000; x = x + 0.1) {
    if (f->Eval(x) < max_amplitude * exp(-1))
      break;
  }
  return x;
}