1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
|
#include "DQM/SiStripCommissioningAnalysis/interface/CalibrationAlgorithm.h"
#include "CondFormats/SiStripObjects/interface/CalibrationAnalysis.h"
#include "DataFormats/SiStripCommon/interface/SiStripHistoTitle.h"
#include "DataFormats/SiStripCommon/interface/SiStripEnumsAndStrings.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "DQM/SiStripCommissioningAnalysis/interface/SiStripPulseShape.h"
#include "TProfile.h"
#include "TF1.h"
#include "TH1.h"
#include "TVirtualFitter.h"
#include "TFitResultPtr.h"
#include "TFitResult.h"
#include <iostream>
#include <sstream>
#include <iomanip>
#include <cmath>
#include "Math/MinimizerOptions.h"
using namespace sistrip;
// ----------------------------------------------------------------------------
//
CalibrationAlgorithm::CalibrationAlgorithm(const edm::ParameterSet& pset, CalibrationAnalysis* const anal)
: CommissioningAlgorithm(anal), cal_(nullptr) {}
// ----------------------------------------------------------------------------
//
void CalibrationAlgorithm::extract(const std::vector<TH1*>& histos) {
// extract analysis object which should be already created
if (!anal()) {
edm::LogWarning(mlCommissioning_) << "[CalibrationAlgorithm::" << __func__ << "]"
<< " NULL pointer to base Analysis object!";
return;
}
CommissioningAnalysis* tmp = const_cast<CommissioningAnalysis*>(anal());
cal_ = dynamic_cast<CalibrationAnalysis*>(tmp);
if (!cal_) {
edm::LogWarning(mlCommissioning_) << "[CalibrationAlgorithm::" << __func__ << "]"
<< " NULL pointer to derived Analysis object!";
return;
}
// Extract FED key from histo title
if (!histos.empty()) {
cal_->fedKey(extractFedKey(histos.front()));
}
// Extract histograms
std::vector<TH1*>::const_iterator ihis = histos.begin();
unsigned int cnt = 0;
for (; ihis != histos.end(); ihis++, cnt++) {
// Check for NULL pointer
if (!(*ihis)) {
continue;
}
// Check name
SiStripHistoTitle title((*ihis)->GetName());
if (title.runType() != sistrip::CALIBRATION && title.runType() != sistrip::CALIBRATION_DECO) {
cal_->addErrorCode(sistrip::unexpectedTask_);
continue;
}
/// extract isha, vfs and calchan values, as well as filling the histogram objects
std::vector<std::string> tokens;
std::string token;
std::istringstream tokenStream(title.extraInfo());
while (std::getline(tokenStream, token, '_')) {
tokens.push_back(token);
}
////////
Histo histo_temp;
histo_temp.first = *ihis;
histo_temp.second = (*ihis)->GetTitle();
histo_temp.first->Sumw2();
histo_.push_back(histo_temp);
apvId_.push_back(title.channel() % 2);
stripId_.push_back(std::stoi(tokens.at(1)) * 16 + std::stoi(tokens.at(3)));
calChan_.push_back(std::stoi(tokens.at(1)));
}
}
// ----------------------------------------------------------------------------
//
void CalibrationAlgorithm::analyse() {
ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2", "Migrad");
ROOT::Math::MinimizerOptions::SetDefaultStrategy(0);
if (!cal_) {
edm::LogWarning(mlCommissioning_) << "[CalibrationAlgorithm::" << __func__ << "]"
<< " NULL pointer to derived Analysis object!";
return;
}
float Amean[2] = {-1., -1.};
float Amin[2] = {-1., -1.};
float Amax[2] = {-1., -1.};
float Aspread[2] = {-1., -1.};
float Tmean[2] = {-1., -1.};
float Tmin[2] = {-1., -1.};
float Tmax[2] = {-1., -1.};
float Tspread[2] = {-1., -1.};
float Rmean[2] = {-1., -1.};
float Rmin[2] = {-1., -1.};
float Rmax[2] = {-1., -1.};
float Rspread[2] = {-1., -1.};
float Cmean[2] = {-1., -1.};
float Cmin[2] = {-1., -1.};
float Cmax[2] = {-1., -1.};
float Cspread[2] = {-1., -1.};
float Smean[2] = {-1., -1.};
float Smin[2] = {-1., -1.};
float Smax[2] = {-1., -1.};
float Sspread[2] = {-1., -1.};
float Kmean[2] = {-1., -1.};
float Kmin[2] = {-1., -1.};
float Kmax[2] = {-1., -1.};
float Kspread[2] = {-1., -1.};
// turnOn
float Omean[2] = {-1., -1.};
float Omin[2] = {-1., -1.};
float Omax[2] = {-1., -1.};
float Ospread[2] = {-1., -1.};
// maximum
float Mmean[2] = {-1., -1.};
float Mmin[2] = {-1., -1.};
float Mmax[2] = {-1., -1.};
float Mspread[2] = {-1., -1.};
// undershoot
float Umean[2] = {-1., -1.};
float Umin[2] = {-1., -1.};
float Umax[2] = {-1., -1.};
float Uspread[2] = {-1., -1.};
// baseline
float Bmean[2] = {-1., -1.};
float Bmin[2] = {-1., -1.};
float Bmax[2] = {-1., -1.};
float Bspread[2] = {-1., -1.};
////////
TFitResultPtr fit_result;
TF1* fit_function = nullptr;
if (cal_->deconv_) {
fit_function = new TF1("fit_function_deco", fdeconv, 0, 400, 7);
fit_function->SetParameters(4, 25, 25, 50, 250, 25, 0.75);
} else {
fit_function = new TF1("fit_function_peak", fpeak, 0, 400, 6);
fit_function->SetParameters(4, 50, 50, 70, 250, 20);
}
//////////
std::vector<unsigned int> nStrips(2, 0.);
for (size_t ihist = 0; ihist < histo_.size(); ihist++) {
if (!histo_[ihist].first) {
edm::LogWarning(mlCommissioning_) << " NULL pointer to histogram for: " << histo_[ihist].second << " !";
return;
}
cal_->amplitude_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->baseline_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->undershoot_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->tail_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->smearing_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->chi2_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->isvalid_[apvId_[ihist]][stripId_[ihist]] = true;
if (histo_[ihist].first->Integral() == 0) {
cal_->isvalid_[apvId_[ihist]][stripId_[ihist]] = false;
continue;
}
// rescale the plot and set reasonable errors
correctDistribution(histo_[ihist].first);
// from NOTE2009_021 : The charge injection provided by the calibration circuit is known with a precision of 5%
float error = histo_[ihist].first->GetMaximum() * 0.05;
for (int i = 1; i <= histo_[ihist].first->GetNbinsX(); ++i)
histo_[ihist].first->SetBinError(i, error);
// set intial par
if (cal_->deconv_)
fit_function->SetParameters(10, 15, 30, 10, 350, 50, 0.75);
else
fit_function->SetParameters(6, 40, 40, 70, 350, 20);
fit_result = histo_[ihist].first->Fit(fit_function, "QS");
// fit-result should exist and have a resonably good status
if (not fit_result.Get())
continue;
float maximum_ampl = fit_function->GetMaximum();
float peak_time = fit_function->GetMaximumX();
float baseline = baseLine(fit_function);
float turn_on_time = turnOn(fit_function, baseline);
float rise_time = peak_time - turn_on_time;
// start filling info
cal_->amplitude_[apvId_[ihist]][stripId_[ihist]] = maximum_ampl - baseline;
cal_->baseline_[apvId_[ihist]][stripId_[ihist]] = baseline;
cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] = rise_time;
cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] = turn_on_time;
cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] = peak_time;
if (cal_->deconv_ and fit_function->GetMinimumX() > peak_time) // make sure the minimum is after the peak-time
cal_->undershoot_[apvId_[ihist]][stripId_[ihist]] =
100 * (fit_function->GetMinimum() - baseline) / (maximum_ampl - baseline);
else
cal_->undershoot_[apvId_[ihist]][stripId_[ihist]] = 0;
// Bin related to peak + 125 ns
int lastBin = histo_[ihist].first->FindBin(peak_time + 125);
if (lastBin > histo_[ihist].first->GetNbinsX() - 4)
lastBin = histo_[ihist].first->GetNbinsX() - 4;
// tail is the amplitude at 5 bx from the maximum
cal_->tail_[apvId_[ihist]][stripId_[ihist]] =
100 * (histo_[ihist].first->GetBinContent(lastBin) - baseline) / (maximum_ampl - baseline);
// reaches 1/e of the peak amplitude
cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] = decayTime(fit_function) - peak_time;
cal_->smearing_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->chi2_[apvId_[ihist]][stripId_[ihist]] =
fit_function->GetChisquare() / (histo_[ihist].first->GetNbinsX() - fit_function->GetNpar());
// calibration channel
cal_->calChan_ = calChan_[ihist];
// apply quality requirements
bool isvalid = true;
if (not cal_->deconv_) { // peak-mode
if (cal_->amplitude_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minAmplitudeThreshold_)
isvalid = false;
if (cal_->baseline_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minBaselineThreshold_)
isvalid = false;
else if (cal_->baseline_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxBaselineThreshold_)
isvalid = false;
if (cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minDecayTimeThreshold_)
isvalid = false;
else if (cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxDecayTimeThreshold_)
isvalid = false;
if (cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minPeakTimeThreshold_)
isvalid = false;
else if (cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxPeakTimeThreshold_)
isvalid = false;
if (cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minRiseTimeThreshold_)
isvalid = false;
else if (cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxRiseTimeThreshold_)
isvalid = false;
if (cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minTurnOnThreshold_)
isvalid = false;
else if (cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxTurnOnThreshold_)
isvalid = false;
if (cal_->chi2_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxChi2Threshold_)
isvalid = false;
} else {
if (fit_function->GetMinimumX() < peak_time)
isvalid = false;
if (cal_->amplitude_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minAmplitudeThreshold_)
isvalid = false;
if (cal_->baseline_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minBaselineThreshold_)
isvalid = false;
if (cal_->baseline_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minBaselineThreshold_)
isvalid = false;
else if (cal_->baseline_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxBaselineThreshold_)
isvalid = false;
if (cal_->chi2_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxChi2Threshold_)
isvalid = false;
if (cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minTurnOnThresholdDeco_)
isvalid = false;
else if (cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxTurnOnThresholdDeco_)
isvalid = false;
if (cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minDecayTimeThresholdDeco_)
isvalid = false;
else if (cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxDecayTimeThresholdDeco_)
isvalid = false;
if (cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minPeakTimeThresholdDeco_)
isvalid = false;
else if (cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxPeakTimeThresholdDeco_)
isvalid = false;
if (cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] < CalibrationAnalysis::minRiseTimeThresholdDeco_)
isvalid = false;
else if (cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] > CalibrationAnalysis::maxRiseTimeThresholdDeco_)
isvalid = false;
}
if (not isvalid) { // not valid set default to zero for all quantities
cal_->amplitude_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->baseline_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->undershoot_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->tail_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->smearing_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->chi2_[apvId_[ihist]][stripId_[ihist]] = 0;
cal_->isvalid_[apvId_[ihist]][stripId_[ihist]] = false;
continue;
}
// in case is valid
nStrips[apvId_[ihist]]++;
//compute mean, max, min, spread only for valid strips
Amean[apvId_[ihist]] += cal_->amplitude_[apvId_[ihist]][stripId_[ihist]];
Amin[apvId_[ihist]] = Amin[apvId_[ihist]] < cal_->amplitude_[apvId_[ihist]][stripId_[ihist]]
? Amin[apvId_[ihist]]
: cal_->amplitude_[apvId_[ihist]][stripId_[ihist]];
Amax[apvId_[ihist]] = Amax[apvId_[ihist]] > cal_->amplitude_[apvId_[ihist]][stripId_[ihist]]
? Amax[apvId_[ihist]]
: cal_->amplitude_[apvId_[ihist]][stripId_[ihist]];
Aspread[apvId_[ihist]] +=
cal_->amplitude_[apvId_[ihist]][stripId_[ihist]] * cal_->amplitude_[apvId_[ihist]][stripId_[ihist]];
Tmean[apvId_[ihist]] += cal_->tail_[apvId_[ihist]][stripId_[ihist]];
Tmin[apvId_[ihist]] = Tmin[apvId_[ihist]] < cal_->tail_[apvId_[ihist]][stripId_[ihist]]
? Tmin[apvId_[ihist]]
: cal_->tail_[apvId_[ihist]][stripId_[ihist]];
Tmax[apvId_[ihist]] = Tmax[apvId_[ihist]] > cal_->tail_[apvId_[ihist]][stripId_[ihist]]
? Tmax[apvId_[ihist]]
: cal_->tail_[apvId_[ihist]][stripId_[ihist]];
Tspread[apvId_[ihist]] += cal_->tail_[apvId_[ihist]][stripId_[ihist]] * cal_->tail_[apvId_[ihist]][stripId_[ihist]];
Rmean[apvId_[ihist]] += cal_->riseTime_[apvId_[ihist]][stripId_[ihist]];
Rmin[apvId_[ihist]] = Rmin[apvId_[ihist]] < cal_->riseTime_[apvId_[ihist]][stripId_[ihist]]
? Rmin[apvId_[ihist]]
: cal_->riseTime_[apvId_[ihist]][stripId_[ihist]];
Rmax[apvId_[ihist]] = Rmax[apvId_[ihist]] > cal_->riseTime_[apvId_[ihist]][stripId_[ihist]]
? Rmax[apvId_[ihist]]
: cal_->riseTime_[apvId_[ihist]][stripId_[ihist]];
Rspread[apvId_[ihist]] +=
cal_->riseTime_[apvId_[ihist]][stripId_[ihist]] * cal_->riseTime_[apvId_[ihist]][stripId_[ihist]];
Cmean[apvId_[ihist]] += cal_->decayTime_[apvId_[ihist]][stripId_[ihist]];
Cmin[apvId_[ihist]] = Cmin[apvId_[ihist]] < cal_->decayTime_[apvId_[ihist]][stripId_[ihist]]
? Cmin[apvId_[ihist]]
: cal_->decayTime_[apvId_[ihist]][stripId_[ihist]];
Cmax[apvId_[ihist]] = Cmax[apvId_[ihist]] > cal_->decayTime_[apvId_[ihist]][stripId_[ihist]]
? Cmax[apvId_[ihist]]
: cal_->decayTime_[apvId_[ihist]][stripId_[ihist]];
Cspread[apvId_[ihist]] +=
cal_->decayTime_[apvId_[ihist]][stripId_[ihist]] * cal_->decayTime_[apvId_[ihist]][stripId_[ihist]];
Smean[apvId_[ihist]] += cal_->smearing_[apvId_[ihist]][stripId_[ihist]];
Smin[apvId_[ihist]] = Smin[apvId_[ihist]] < cal_->smearing_[apvId_[ihist]][stripId_[ihist]]
? Smin[apvId_[ihist]]
: cal_->smearing_[apvId_[ihist]][stripId_[ihist]];
Smax[apvId_[ihist]] = Smax[apvId_[ihist]] > cal_->smearing_[apvId_[ihist]][stripId_[ihist]]
? Smax[apvId_[ihist]]
: cal_->smearing_[apvId_[ihist]][stripId_[ihist]];
Sspread[apvId_[ihist]] +=
cal_->smearing_[apvId_[ihist]][stripId_[ihist]] * cal_->smearing_[apvId_[ihist]][stripId_[ihist]];
Kmean[apvId_[ihist]] += cal_->chi2_[apvId_[ihist]][stripId_[ihist]];
Kmin[apvId_[ihist]] = Kmin[apvId_[ihist]] < cal_->chi2_[apvId_[ihist]][stripId_[ihist]]
? Kmin[apvId_[ihist]]
: cal_->chi2_[apvId_[ihist]][stripId_[ihist]];
Kmax[apvId_[ihist]] = Kmax[apvId_[ihist]] > cal_->chi2_[apvId_[ihist]][stripId_[ihist]]
? Kmax[apvId_[ihist]]
: cal_->chi2_[apvId_[ihist]][stripId_[ihist]];
Kspread[apvId_[ihist]] += cal_->chi2_[apvId_[ihist]][stripId_[ihist]] * cal_->chi2_[apvId_[ihist]][stripId_[ihist]];
Omean[apvId_[ihist]] += cal_->turnOn_[apvId_[ihist]][stripId_[ihist]];
Omin[apvId_[ihist]] = Omin[apvId_[ihist]] < cal_->turnOn_[apvId_[ihist]][stripId_[ihist]]
? Omin[apvId_[ihist]]
: cal_->turnOn_[apvId_[ihist]][stripId_[ihist]];
Omax[apvId_[ihist]] = Omax[apvId_[ihist]] > cal_->turnOn_[apvId_[ihist]][stripId_[ihist]]
? Omax[apvId_[ihist]]
: cal_->turnOn_[apvId_[ihist]][stripId_[ihist]];
Ospread[apvId_[ihist]] +=
cal_->turnOn_[apvId_[ihist]][stripId_[ihist]] * cal_->turnOn_[apvId_[ihist]][stripId_[ihist]];
Mmean[apvId_[ihist]] += cal_->peakTime_[apvId_[ihist]][stripId_[ihist]];
Mmin[apvId_[ihist]] = Mmin[apvId_[ihist]] < cal_->peakTime_[apvId_[ihist]][stripId_[ihist]]
? Mmin[apvId_[ihist]]
: cal_->peakTime_[apvId_[ihist]][stripId_[ihist]];
Mmax[apvId_[ihist]] = Mmax[apvId_[ihist]] > cal_->peakTime_[apvId_[ihist]][stripId_[ihist]]
? Mmax[apvId_[ihist]]
: cal_->peakTime_[apvId_[ihist]][stripId_[ihist]];
Mspread[apvId_[ihist]] +=
cal_->peakTime_[apvId_[ihist]][stripId_[ihist]] * cal_->peakTime_[apvId_[ihist]][stripId_[ihist]];
Umean[apvId_[ihist]] += cal_->undershoot_[apvId_[ihist]][stripId_[ihist]];
Umin[apvId_[ihist]] = Umin[apvId_[ihist]] < cal_->undershoot_[apvId_[ihist]][stripId_[ihist]]
? Umin[apvId_[ihist]]
: cal_->undershoot_[apvId_[ihist]][stripId_[ihist]];
Umax[apvId_[ihist]] = Umax[apvId_[ihist]] > cal_->undershoot_[apvId_[ihist]][stripId_[ihist]]
? Umax[apvId_[ihist]]
: cal_->undershoot_[apvId_[ihist]][stripId_[ihist]];
Uspread[apvId_[ihist]] +=
cal_->undershoot_[apvId_[ihist]][stripId_[ihist]] * cal_->undershoot_[apvId_[ihist]][stripId_[ihist]];
Bmean[apvId_[ihist]] += cal_->baseline_[apvId_[ihist]][stripId_[ihist]];
Bmin[apvId_[ihist]] = Bmin[apvId_[ihist]] < cal_->baseline_[apvId_[ihist]][stripId_[ihist]]
? Bmin[apvId_[ihist]]
: cal_->baseline_[apvId_[ihist]][stripId_[ihist]];
Bmax[apvId_[ihist]] = Bmax[apvId_[ihist]] > cal_->baseline_[apvId_[ihist]][stripId_[ihist]]
? Bmax[apvId_[ihist]]
: cal_->baseline_[apvId_[ihist]][stripId_[ihist]];
Bspread[apvId_[ihist]] +=
cal_->baseline_[apvId_[ihist]][stripId_[ihist]] * cal_->baseline_[apvId_[ihist]][stripId_[ihist]];
}
// make mean values
for (int i = 0; i < 2; i++) {
if (nStrips[i] != 0) {
Amean[i] = Amean[i] / nStrips[i];
Tmean[i] = Tmean[i] / nStrips[i];
Rmean[i] = Rmean[i] / nStrips[i];
Cmean[i] = Cmean[i] / nStrips[i];
Omean[i] = Omean[i] / nStrips[i];
Mmean[i] = Mmean[i] / nStrips[i];
Umean[i] = Umean[i] / nStrips[i];
Bmean[i] = Bmean[i] / nStrips[i];
Smean[i] = Smean[i] / nStrips[i];
Kmean[i] = Kmean[i] / nStrips[i];
Aspread[i] = Aspread[i] / nStrips[i];
Tspread[i] = Tspread[i] / nStrips[i];
Rspread[i] = Rspread[i] / nStrips[i];
Cspread[i] = Cspread[i] / nStrips[i];
Ospread[i] = Ospread[i] / nStrips[i];
Mspread[i] = Mspread[i] / nStrips[i];
Uspread[i] = Uspread[i] / nStrips[i];
Bspread[i] = Bspread[i] / nStrips[i];
Sspread[i] = Sspread[i] / nStrips[i];
Kspread[i] = Kspread[i] / nStrips[i];
}
}
// fill the mean, max, min, spread, ... histograms.
for (int i = 0; i < 2; ++i) {
cal_->mean_amplitude_[i] = Amean[i];
cal_->mean_tail_[i] = Tmean[i];
cal_->mean_riseTime_[i] = Rmean[i];
cal_->mean_decayTime_[i] = Cmean[i];
cal_->mean_turnOn_[i] = Omean[i];
cal_->mean_peakTime_[i] = Mmean[i];
cal_->mean_undershoot_[i] = Umean[i];
cal_->mean_baseline_[i] = Bmean[i];
cal_->mean_smearing_[i] = Smean[i];
cal_->mean_chi2_[i] = Kmean[i];
cal_->min_amplitude_[i] = Amin[i];
cal_->min_tail_[i] = Tmin[i];
cal_->min_riseTime_[i] = Rmin[i];
cal_->min_decayTime_[i] = Cmin[i];
cal_->min_turnOn_[i] = Omin[i];
cal_->min_peakTime_[i] = Mmin[i];
cal_->min_undershoot_[i] = Umin[i];
cal_->min_baseline_[i] = Bmin[i];
cal_->min_smearing_[i] = Smin[i];
cal_->min_chi2_[i] = Kmin[i];
cal_->max_amplitude_[i] = Amax[i];
cal_->max_tail_[i] = Tmax[i];
cal_->max_riseTime_[i] = Rmax[i];
cal_->max_decayTime_[i] = Cmax[i];
cal_->max_turnOn_[i] = Omax[i];
cal_->max_peakTime_[i] = Mmax[i];
cal_->max_undershoot_[i] = Umax[i];
cal_->max_baseline_[i] = Bmax[i];
cal_->max_smearing_[i] = Smax[i];
cal_->max_chi2_[i] = Kmax[i];
cal_->spread_amplitude_[i] = sqrt(fabs(Aspread[i] - Amean[i] * Amean[i]));
cal_->spread_tail_[i] = sqrt(fabs(Tspread[i] - Tmean[i] * Tmean[i]));
cal_->spread_riseTime_[i] = sqrt(fabs(Rspread[i] - Rmean[i] * Rmean[i]));
cal_->spread_decayTime_[i] = sqrt(fabs(Cspread[i] - Cmean[i] * Cmean[i]));
cal_->spread_turnOn_[i] = sqrt(fabs(Ospread[i] - Omean[i] * Omean[i]));
cal_->spread_peakTime_[i] = sqrt(fabs(Mspread[i] - Mmean[i] * Mmean[i]));
cal_->spread_undershoot_[i] = sqrt(fabs(Uspread[i] - Umean[i] * Umean[i]));
cal_->spread_baseline_[i] = sqrt(fabs(Bspread[i] - Bmean[i] * Bmean[i]));
cal_->spread_smearing_[i] = sqrt(fabs(Sspread[i] - Smean[i] * Smean[i]));
cal_->spread_chi2_[i] = sqrt(fabs(Kspread[i] - Kmean[i] * Kmean[i]));
}
if (fit_function)
delete fit_function;
}
// ------
void CalibrationAlgorithm::correctDistribution(TH1* histo) const {
// 20 events per point in the TM loop --> divide by 20 to have the amplitude of a single event readout
for (int iBin = 0; iBin < histo->GetNbinsX(); iBin++) {
histo->SetBinContent(iBin + 1, -histo->GetBinContent(iBin + 1) / 20.);
}
}
// ----------------------------------------------------------------------------
float CalibrationAlgorithm::baseLine(TF1* f) {
float xmax = 10;
float baseline = 0;
int npoints = 0;
float x = f->GetXmin();
for (; x < xmax; x += 0.1) {
baseline += f->Eval(x);
npoints++;
}
return baseline / npoints;
}
// ----------------------------------------------------------------------------
float CalibrationAlgorithm::turnOn(TF1* f,
const float& baseline) { // should happen within 100 ns in both deco and peak modes
float max_amplitude = f->GetMaximum();
float time = 10.;
for (; time < 100 && (f->Eval(time) - baseline) < 0.05 * (max_amplitude - baseline); time += 0.1) {
} // flucutation higher than 5% of the pulse height
return time;
}
// ----------------------------------------------------------------------------
float CalibrationAlgorithm::decayTime(
TF1* f) { // if we approximate the decay to an exp(-t/tau), in one constant unit, the amplited is reduced by e^{-1}
float xval = f->GetMaximumX();
float max_amplitude = f->GetMaximum();
float x = xval;
for (; x < 1000; x = x + 0.1) {
if (f->Eval(x) < max_amplitude * exp(-1))
break;
}
return x;
}
|