Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
#include "DQM/SiStripCommissioningAnalysis/interface/CalibrationScanAlgorithm.h"
#include "CondFormats/SiStripObjects/interface/CalibrationScanAnalysis.h"
#include "DataFormats/SiStripCommon/interface/SiStripHistoTitle.h"
#include "DataFormats/SiStripCommon/interface/SiStripEnumsAndStrings.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "DQM/SiStripCommissioningAnalysis/interface/SiStripPulseShape.h"
#include "TProfile.h"
#include "TF1.h"
#include "TH1.h"
#include "TVirtualFitter.h"
#include "TFitResult.h"
#include "TMath.h"
#include "TGraph2D.h"
#include "TH2F.h"
#include "TCanvas.h"
#include "TROOT.h"
#include <iostream>
#include <sstream>
#include <iomanip>
#include <cmath>
#include "Math/MinimizerOptions.h"

using namespace sistrip;

// ----------------------------------------------------------------------------
//
CalibrationScanAlgorithm::CalibrationScanAlgorithm(const edm::ParameterSet& pset, CalibrationScanAnalysis* const anal)
    : CommissioningAlgorithm(anal), cal_(nullptr) {}

// ----------------------------------------------------------------------------
//
void CalibrationScanAlgorithm::extract(const std::vector<TH1*>& histos) {
  if (!anal()) {
    edm::LogWarning(mlCommissioning_) << "[CalibrationScanAlgorithm::" << __func__ << "]"
                                      << " NULL pointer to base Analysis object!";
    return;
  }

  CommissioningAnalysis* tmp = const_cast<CommissioningAnalysis*>(anal());
  cal_ = dynamic_cast<CalibrationScanAnalysis*>(tmp);
  if (!cal_) {
    edm::LogWarning(mlCommissioning_) << "[CalibrationScanAlgorithm::" << __func__ << "]"
                                      << " NULL pointer to derived Analysis object!";
    return;
  }

  // Extract FED key from histo title
  if (!histos.empty()) {
    cal_->fedKey(extractFedKey(histos.front()));
  }

  // Extract histograms
  std::vector<TH1*>::const_iterator ihis = histos.begin();
  unsigned int cnt = 0;
  for (; ihis != histos.end(); ihis++, cnt++) {
    // Check for NULL pointer
    if (!(*ihis)) {
      continue;
    }

    // Check name
    SiStripHistoTitle title((*ihis)->GetName());
    if (title.runType() != sistrip::CALIBRATION_SCAN && title.runType() != sistrip::CALIBRATION_SCAN_DECO) {
      cal_->addErrorCode(sistrip::unexpectedTask_);
      continue;
    }

    /// extract isha, vfs and calchan values, as well as filling the histogram objects
    Histo histo_temp;
    histo_temp.first = *ihis;
    histo_temp.first->Sumw2();
    histo_temp.second = (*ihis)->GetTitle();
    histo_[title.extraInfo()].resize(2);
    if (title.channel() % 2 == 0)
      histo_[title.extraInfo()][0] = histo_temp;
    else
      histo_[title.extraInfo()][1] = histo_temp;
  }
}
// ----------------------------------------------------------------------------
//
void CalibrationScanAlgorithm::analyse() {
  ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2", "Migrad");
  ROOT::Math::MinimizerOptions::SetDefaultStrategy(0);

  if (!cal_) {
    edm::LogWarning(mlCommissioning_) << "[CalibrationScanAlgorithm::" << __func__ << "]"
                                      << " NULL pointer to derived Analysis object!";
    return;
  }

  ////////
  TFitResultPtr fit_result;
  TF1* fit_function_turnOn = nullptr;
  TF1* fit_function_decay = nullptr;
  TF1* fit_function_deco = nullptr;
  if (cal_->deconv_) {
    fit_function_deco = new TF1("fit_function_deco", fdeconv, 0, 400, 7);
    fit_function_deco->SetParameters(4, 25, 25, 50, 250, 25, 0.75);
  } else {
    fit_function_turnOn = new TF1("fit_function_turnOn", fturnOn, 0, 400, 4);
    fit_function_decay = new TF1("fit_function_decay", fdecay, 0, 400, 3);
    fit_function_turnOn->SetParameters(50, 50, 40, 20);
    fit_function_decay->SetParameters(-150, -0.01, -0.1);
  }

  /// loop over histograms for this fiber
  for (auto map_element : histo_) {
    // add to the analysis result
    cal_->addOneCalibrationPoint(map_element.first);

    // stored as integer the scanned isha and vfs values
    std::vector<std::string> tokens;
    std::string token;
    std::istringstream tokenStream(map_element.first);
    while (std::getline(tokenStream, token, '_')) {
      tokens.push_back(token);
    }

    scanned_isha_.push_back(std::stoi(tokens.at(1)));
    scanned_vfs_.push_back(std::stoi(tokens.at(3)));

    // loop on APVs
    for (size_t iapv = 0; iapv < 2; iapv++) {
      if (!map_element.second[iapv].first) {
        edm::LogWarning(mlCommissioning_)
            << " NULL pointer to histogram for: " << map_element.second[iapv].second << " !";
        return;
      }

      cal_->amplitude_[map_element.first][iapv] = 0;
      cal_->baseline_[map_element.first][iapv] = 0;
      cal_->riseTime_[map_element.first][iapv] = 0;
      cal_->turnOn_[map_element.first][iapv] = 0;
      cal_->peakTime_[map_element.first][iapv] = 0;
      cal_->undershoot_[map_element.first][iapv] = 0;
      cal_->tail_[map_element.first][iapv] = 0;
      cal_->decayTime_[map_element.first][iapv] = 0;
      cal_->smearing_[map_element.first][iapv] = 0;
      cal_->chi2_[map_element.first][iapv] = 0;
      cal_->isvalid_[map_element.first][iapv] = true;

      if (map_element.second[iapv].first->Integral() == 0) {
        cal_->isvalid_[map_element.first][iapv] = false;
        continue;
      }

      // rescale the plot
      correctDistribution(map_element.second[iapv].first, false);

      // from NOTE2009_021 : The charge injection provided by the calibration circuit is known with a precision of 5%;
      float error = (map_element.second[iapv].first->GetMaximum() * 0.05);
      for (int i = 1; i <= map_element.second[iapv].first->GetNbinsX(); ++i)
        map_element.second[iapv].first->SetBinError(i, error);

      /////
      if (cal_->deconv_) {  // deconvolution mode
        fit_function_deco->SetParameters(4, 25, 25, 50, 250, 25, 0.75);
        fit_result = map_element.second[iapv].first->Fit(fit_function_deco, "QRS");

        if (not fit_result.Get()) {
          cal_->isvalid_[map_element.first][iapv] = false;
          continue;
        }

        /// make the fit
        float maximum_ampl = fit_function_deco->GetMaximum();
        float peak_time = fit_function_deco->GetMaximumX();
        float baseline = baseLine(fit_function_deco);
        float turn_on_time = turnOn(fit_function_deco, baseline);
        float rise_time = peak_time - turn_on_time;

        // start filling info
        cal_->amplitude_[map_element.first][iapv] = maximum_ampl - baseline;
        cal_->baseline_[map_element.first][iapv] = baseline;
        cal_->riseTime_[map_element.first][iapv] = rise_time;
        cal_->turnOn_[map_element.first][iapv] = turn_on_time;
        cal_->peakTime_[map_element.first][iapv] = peak_time;
        if (fit_function_deco->GetMinimumX() > rise_time)
          cal_->undershoot_[map_element.first][iapv] =
              100 * (fit_function_deco->GetMinimum() - baseline) / (maximum_ampl - baseline);
        else
          cal_->undershoot_[map_element.first][iapv] = 0;

        // Bin related to peak + 125 ns
        int lastBin = map_element.second[iapv].first->FindBin(peak_time + 125);
        if (lastBin > map_element.second[iapv].first->GetNbinsX() - 4)
          lastBin = map_element.second[iapv].first->GetNbinsX() - 4;

        // tail is the amplitude at 5 bx from the maximum
        cal_->tail_[map_element.first][iapv] =
            100 * (map_element.second[iapv].first->GetBinContent(lastBin) - baseline) / (maximum_ampl - baseline);

        // reaches 1/e of the peak amplitude
        cal_->decayTime_[map_element.first][iapv] = decayTime(fit_function_deco) - peak_time;
        cal_->smearing_[map_element.first][iapv] = 0;
        cal_->chi2_[map_element.first][iapv] =
            fit_function_deco->GetChisquare() /
            (map_element.second[iapv].first->GetNbinsX() - fit_function_deco->GetNpar());

      } else {
        // peak mode
        fit_function_turnOn->SetParameters(50, 50, 40, 20);
        fit_function_turnOn->SetRange(fit_function_turnOn->GetXmin(),
                                      map_element.second[iapv].first->GetBinCenter(
                                          map_element.second[iapv].first->GetMaximumBin()));  // up to the maximum
        fit_result = map_element.second[iapv].first->Fit(fit_function_turnOn, "QSR");
        if (not fit_result.Get()) {
          cal_->isvalid_[map_element.first][iapv] = false;
          continue;
        }

        /// make the fit
        float maximum_ampl = fit_function_turnOn->GetMaximum();
        float peak_time = fit_function_turnOn->GetMaximumX();
        float baseline = baseLine(fit_function_turnOn);
        float turn_on_time = turnOn(fit_function_turnOn, baseline);
        float rise_time = peak_time - turn_on_time;

        // start filling info
        cal_->amplitude_[map_element.first][iapv] = maximum_ampl - baseline;
        cal_->baseline_[map_element.first][iapv] = baseline;
        cal_->riseTime_[map_element.first][iapv] = rise_time;
        cal_->turnOn_[map_element.first][iapv] = turn_on_time;
        cal_->peakTime_[map_element.first][iapv] = peak_time;

        fit_function_decay->SetParameters(-150, -0.01, -0.1);
        fit_function_decay->SetRange(
            map_element.second[iapv].first->GetBinCenter(map_element.second[iapv].first->GetMaximumBin()) + 10.,
            fit_function_decay->GetXmax());  // up to the maximum
        fit_result = map_element.second[iapv].first->Fit(fit_function_decay, "QSR+");

        if (fit_result.Get() and fit_result->Status() >= 4) {
          cal_->isvalid_[map_element.first][iapv] = false;
          continue;
        }

        cal_->undershoot_[map_element.first][iapv] = 0;

        // Bin related to peak + 125 ns
        int lastBin = map_element.second[iapv].first->FindBin(peak_time + 125);
        if (lastBin > map_element.second[iapv].first->GetNbinsX() - 4)
          lastBin = map_element.second[iapv].first->GetNbinsX() - 4;

        // tail is the amplitude at 5 bx from the maximum
        cal_->tail_[map_element.first][iapv] =
            100 * (map_element.second[iapv].first->GetBinContent(lastBin) - baseline) / (maximum_ampl - baseline);

        // reaches 1/e of the peak amplitude
        cal_->decayTime_[map_element.first][iapv] = decayTime(fit_function_decay) - peak_time;
        cal_->smearing_[map_element.first][iapv] = 0;
        cal_->chi2_[map_element.first][iapv] =
            (fit_function_turnOn->GetChisquare() + fit_function_decay->GetChisquare()) /
            (map_element.second[iapv].first->GetNbinsX() - fit_function_turnOn->GetNpar() -
             fit_function_decay->GetNpar());

        // apply quality requirements
        bool isvalid = true;
        if (cal_->amplitude_[map_element.first][iapv] < CalibrationScanAnalysis::minAmplitudeThreshold_)
          isvalid = false;
        if (cal_->baseline_[map_element.first][iapv] < CalibrationScanAnalysis::minBaselineThreshold_)
          isvalid = false;
        else if (cal_->baseline_[map_element.first][iapv] > CalibrationScanAnalysis::maxBaselineThreshold_)
          isvalid = false;
        if (cal_->decayTime_[map_element.first][iapv] < CalibrationScanAnalysis::minDecayTimeThreshold_)
          isvalid = false;
        else if (cal_->decayTime_[map_element.first][iapv] > CalibrationScanAnalysis::maxDecayTimeThreshold_)
          isvalid = false;
        if (cal_->peakTime_[map_element.first][iapv] < CalibrationScanAnalysis::minPeakTimeThreshold_)
          isvalid = false;
        else if (cal_->peakTime_[map_element.first][iapv] > CalibrationScanAnalysis::maxPeakTimeThreshold_)
          isvalid = false;
        if (cal_->riseTime_[map_element.first][iapv] < CalibrationScanAnalysis::minRiseTimeThreshold_)
          isvalid = false;
        else if (cal_->riseTime_[map_element.first][iapv] > CalibrationScanAnalysis::maxRiseTimeThreshold_)
          isvalid = false;
        if (cal_->turnOn_[map_element.first][iapv] < CalibrationScanAnalysis::minTurnOnThreshold_)
          isvalid = false;
        else if (cal_->turnOn_[map_element.first][iapv] > CalibrationScanAnalysis::maxTurnOnThreshold_)
          isvalid = false;
        if (cal_->chi2_[map_element.first][iapv] > CalibrationScanAnalysis::maxChi2Threshold_)
          isvalid = false;

        if (not isvalid) {
          cal_->amplitude_[map_element.first][iapv] = 0;
          cal_->baseline_[map_element.first][iapv] = 0;
          cal_->riseTime_[map_element.first][iapv] = 0;
          cal_->turnOn_[map_element.first][iapv] = 0;
          cal_->peakTime_[map_element.first][iapv] = 0;
          cal_->undershoot_[map_element.first][iapv] = 0;
          cal_->tail_[map_element.first][iapv] = 0;
          cal_->decayTime_[map_element.first][iapv] = 0;
          cal_->smearing_[map_element.first][iapv] = 0;
          cal_->chi2_[map_element.first][iapv] = 0;
          cal_->isvalid_[map_element.first][iapv] = false;
        }
      }
    }
  }

  if (fit_function_deco)
    delete fit_function_deco;
  if (fit_function_decay)
    delete fit_function_decay;
  if (fit_function_turnOn)
    delete fit_function_turnOn;
}

// ------
void CalibrationScanAlgorithm::correctDistribution(TH1* histo, const bool& isShape) const {
  // 5 events per point in the TM loop
  // total signal is obtained by summing 16 strips of the same calChan
  if (not isShape) {
    for (int iBin = 0; iBin < histo->GetNbinsX(); iBin++) {
      histo->SetBinContent(iBin + 1, -histo->GetBinContent(iBin + 1) / 16.);
      histo->SetBinContent(iBin + 1, histo->GetBinContent(iBin + 1) / 5.);
    }
  } else
    histo->Scale(1. / histo->Integral());
}

// ----------------------------------------------------------------------------
float CalibrationScanAlgorithm::baseLine(TF1* f) {
  float x = f->GetXmin();
  float xmax = 10;
  float baseline = 0;
  int npoints = 0;
  for (; x < xmax; x += 0.1) {
    baseline += f->Eval(x);
    npoints++;
  }
  return baseline / npoints;
}

// ----------------------------------------------------------------------------
float CalibrationScanAlgorithm::turnOn(
    TF1* f, const float& baseline) {  // should happen within 100 ns in both deco and peak modes
  float max_amplitude = f->GetMaximum();
  float time = 10.;
  for (; time < 100 && (f->Eval(time) - baseline) < 0.05 * (max_amplitude - baseline); time += 0.1) {
  }  // flucutation higher than 5% of the pulse height
  return time;
}

// ----------------------------------------------------------------------------
float CalibrationScanAlgorithm::decayTime(
    TF1* f) {  // if we approximate the decay to an exp(-t/tau), in one constant unit, the amplited is reduced by e^{-1}
  float xval = std::max(f->GetXmin(), f->GetMaximumX());
  float max_amplitude = f->GetMaximum();
  float x = xval;
  for (; x < 1000;
       x = x +
           0.1) {  // 1000 is a reasoable large bound to compute the decay time .. in case the function is bad it is useful to break the loop
    if (f->Eval(x) < max_amplitude * exp(-1))
      break;
  }
  return x;
}

// --- function to extract the VFS value corresponding to decay time of 125ns, then ISHA close to 50 ns
void CalibrationScanAlgorithm::tuneIndependently(const int& iapv,
                                                 const float& targetRiseTime,
                                                 const float& targetDecayTime) {
  std::map<int, std::vector<float> > decayTime_vs_vfs;
  TString name;
  int imap = 0;

  for (auto map_element : histo_) {
    // only consider isha values in the middle of the scanned range
    if (scanned_isha_.at(imap) <= CalibrationScanAnalysis::minISHAforVFSTune_ or
        scanned_isha_.at(imap) >= CalibrationScanAnalysis::maxISHAforVFSTune_) {
      imap++;
      continue;
    }

    if (cal_->isValid(map_element.first)[iapv])
      decayTime_vs_vfs[scanned_vfs_.at(imap)].push_back(cal_->decayTime(map_element.first)[iapv]);

    if (name == "") {  // store the base name
      name = Form("%s", map_element.second[iapv].first->GetName());
      name.ReplaceAll("_" + map_element.first, "");
    }
    imap++;
  }

  // sort before taking the median
  for (auto iter : decayTime_vs_vfs)
    sort(iter.second.begin(), iter.second.end());

  name.ReplaceAll("ExpertHisto_", "");

  // transform the dependance vs vfs in graph
  cal_->decayTime_vs_vfs_.push_back(new TGraph());
  cal_->decayTime_vs_vfs_.back()->SetName(Form("decayTime_%s", name.Data()));

  // transform the dependance vs isha in graph
  cal_->riseTime_vs_isha_.push_back(new TGraph());
  cal_->riseTime_vs_isha_.back()->SetName(Form("riseTime_%s", name.Data()));

  if (!decayTime_vs_vfs.empty()) {
    int ipoint = 0;
    for (auto map_element : decayTime_vs_vfs) {
      if (!map_element.second.empty()) {
        cal_->decayTime_vs_vfs_.at(iapv)->SetPoint(
            ipoint, map_element.second.at(round(map_element.second.size() / 2)), map_element.first);
        ipoint++;
      }
    }

    double max_apv =
        TMath::MaxElement(cal_->decayTime_vs_vfs_.at(iapv)->GetN(), cal_->decayTime_vs_vfs_.at(iapv)->GetY());
    double min_apv =
        TMath::MinElement(cal_->decayTime_vs_vfs_.at(iapv)->GetN(), cal_->decayTime_vs_vfs_.at(iapv)->GetY());

    cal_->vfs_[iapv] = cal_->decayTime_vs_vfs_.at(iapv)->Eval(targetDecayTime);

    // avoid extrapolations
    if (cal_->vfs_[iapv] < min_apv)
      cal_->vfs_[iapv] = min_apv;
    else if (cal_->vfs_[iapv] > max_apv)
      cal_->vfs_[iapv] = max_apv;

    // value for each isha but different ISHA
    std::map<int, std::vector<float> > riseTime_vs_isha;
    imap = 0;
    // store for each isha value all rise time (changing isha)
    for (auto map_element : histo_) {
      if (std::abs(scanned_vfs_.at(imap) - cal_->vfs_[iapv]) < CalibrationScanAnalysis::VFSrange_ and
          cal_->isValid(map_element.first)[iapv])  //around chosen VFS by \pm 20
        riseTime_vs_isha[scanned_isha_.at(imap)].push_back(cal_->riseTime(map_element.first)[iapv]);
      if (name == "") {
        name = Form("%s", map_element.second[iapv].first->GetName());
        name.ReplaceAll("_" + map_element.first, "");
      }
      imap++;
    }

    // sort before taking the median
    for (auto iter : riseTime_vs_isha)
      sort(iter.second.begin(), iter.second.end());
    name.ReplaceAll("ExpertHisto_", "");

    ////
    if (!riseTime_vs_isha.empty()) {
      int ipoint = 0;
      for (auto map_element : riseTime_vs_isha) {
        if (!map_element.second.empty()) {
          cal_->riseTime_vs_isha_.at(iapv)->SetPoint(
              ipoint, map_element.second.at(round(map_element.second.size() / 2)), map_element.first);
          ipoint++;
        }
      }

      double max_apv =
          TMath::MaxElement(cal_->riseTime_vs_isha_.at(iapv)->GetN(), cal_->riseTime_vs_isha_.at(iapv)->GetY());
      double min_apv =
          TMath::MinElement(cal_->riseTime_vs_isha_.at(iapv)->GetN(), cal_->riseTime_vs_isha_.at(iapv)->GetY());

      cal_->isha_[iapv] = cal_->riseTime_vs_isha_.at(iapv)->Eval(targetRiseTime);

      if (cal_->isha_[iapv] < min_apv)
        cal_->isha_[iapv] = min_apv;
      else if (cal_->isha_[iapv] > max_apv)
        cal_->isha_[iapv] = max_apv;
    } else
      cal_->isha_[iapv] = -1;
  }
}

////////////// Simultaneously tune isha and vfs
void CalibrationScanAlgorithm::tuneSimultaneously(const int& iapv,
                                                  const float& targetRiseTime,
                                                  const float& targetDecayTime) {
  // Build 2D graph for each APV with rise and decay time trend vs ISHA and VFS
  cal_->decayTime_vs_isha_vfs_.push_back(new TGraph2D());
  cal_->riseTime_vs_isha_vfs_.push_back(new TGraph2D());

  // store for each vfs value all decay time (changing vfs)
  TString name_apv;
  int ipoint_apv = 0;
  int imap = 0;

  for (auto map_element : histo_) {
    if (cal_->isValid(map_element.first)[iapv]) {
      cal_->decayTime_vs_isha_vfs_.at(iapv)->SetPoint(
          ipoint_apv, scanned_isha_.at(imap), scanned_vfs_.at(imap), cal_->decayTime(map_element.first)[iapv]);
      cal_->riseTime_vs_isha_vfs_.at(iapv)->SetPoint(
          ipoint_apv, scanned_isha_.at(imap), scanned_vfs_.at(imap), cal_->riseTime(map_element.first)[iapv]);
      ipoint_apv++;
    }
    if (name_apv == "") {  // store the base name
      name_apv = Form("%s", map_element.second[iapv].first->GetName());
      name_apv.ReplaceAll("_" + map_element.first, "");
    }
    imap++;
  }

  name_apv.ReplaceAll("ExpertHisto_", "");

  cal_->decayTime_vs_isha_vfs_.at(iapv)->SetName(Form("decayTime_%s", name_apv.Data()));
  cal_->riseTime_vs_isha_vfs_.at(iapv)->SetName(Form("riseTime_%s", name_apv.Data()));

  // Define 2D histogram for the distance between values and target
  TH2F* hist_decay_apv = new TH2F("hist_decay_apv",
                                  "hist_decay_apv",
                                  500,
                                  *min_element(scanned_isha_.begin(), scanned_isha_.end()),
                                  *max_element(scanned_isha_.begin(), scanned_isha_.end()),
                                  500,
                                  *min_element(scanned_vfs_.begin(), scanned_vfs_.end()),
                                  *max_element(scanned_vfs_.begin(), scanned_vfs_.end()));

  TH2F* hist_rise_apv = (TH2F*)hist_decay_apv->Clone();
  hist_rise_apv->SetName("hist_rise_apv");
  hist_rise_apv->Reset();

  TH2F* hist_distance = (TH2F*)hist_decay_apv->Clone();
  hist_distance->SetName("hist_distance");
  hist_distance->Reset();

  for (int iBin = 1; iBin <= hist_decay_apv->GetNbinsX(); iBin++) {
    for (int jBin = 1; jBin <= hist_decay_apv->GetNbinsY(); jBin++) {
      if (ipoint_apv != 0) {
        if (cal_->decayTime_vs_isha_vfs_.at(iapv)->GetN() > 10)  // to make sure the interpolation can work
          hist_decay_apv->SetBinContent(
              iBin,
              jBin,
              cal_->decayTime_vs_isha_vfs_.at(iapv)->Interpolate(hist_decay_apv->GetXaxis()->GetBinCenter(iBin),
                                                                 hist_decay_apv->GetYaxis()->GetBinCenter(jBin)));
        if (cal_->riseTime_vs_isha_vfs_.at(iapv)->GetN() > 10)
          hist_rise_apv->SetBinContent(
              iBin,
              jBin,
              cal_->riseTime_vs_isha_vfs_.at(iapv)->Interpolate(hist_rise_apv->GetXaxis()->GetBinCenter(iBin),
                                                                hist_rise_apv->GetYaxis()->GetBinCenter(jBin)));
      }
    }
  }

  // further smoothing --> a smooth behaviour is indeed expected
  hist_decay_apv->Smooth();
  hist_rise_apv->Smooth();

  for (int iBin = 1; iBin <= hist_decay_apv->GetNbinsX(); iBin++) {
    for (int jBin = 1; jBin <= hist_decay_apv->GetNbinsY(); jBin++) {
      hist_distance->SetBinContent(
          iBin,
          jBin,
          sqrt(pow((hist_decay_apv->GetBinContent(iBin, jBin) - targetDecayTime) / targetDecayTime, 2) +
               pow((hist_rise_apv->GetBinContent(iBin, jBin) - targetRiseTime) / targetRiseTime, 2)));
    }
  }

  int minx, miny, minz;
  hist_distance->GetMinimumBin(minx, miny, minz);

  cal_->isha_[iapv] = round(hist_distance->GetXaxis()->GetBinCenter(minx));
  cal_->vfs_[iapv] = round(hist_distance->GetYaxis()->GetBinCenter(miny));

  delete hist_decay_apv;
  delete hist_rise_apv;
  delete hist_distance;
}

void CalibrationScanAlgorithm::fillTunedObservables(const int& apvid) {
  // find the closest isha and vfs for each APV
  int distance_apv = 10000;

  // find close by ISHA
  for (size_t i = 0; i < scanned_isha_.size(); i++) {
    if (std::abs(scanned_isha_.at(i) - cal_->bestISHA().at(apvid)) < distance_apv) {
      distance_apv = std::abs(scanned_isha_.at(i) - cal_->bestISHA().at(apvid));
      cal_->tunedISHA_.at(apvid) = scanned_isha_.at(i);
    }
  }

  distance_apv = 10000;

  // find close by VFS
  for (size_t i = 0; i < scanned_vfs_.size(); i++) {
    if (std::abs(scanned_vfs_.at(i) - cal_->bestVFS().at(apvid)) < distance_apv) {
      distance_apv = std::abs(scanned_vfs_.at(i) - cal_->bestVFS().at(apvid));
      cal_->tunedVFS_.at(apvid) = scanned_vfs_.at(i);
    }
  }

  ///
  std::string key_apv = std::string(Form("isha_%d_vfs_%d", cal_->tunedISHA().at(apvid), cal_->tunedVFS().at(apvid)));
  if (!cal_->amplitude(key_apv).empty()) {
    cal_->tunedAmplitude_[apvid] = cal_->amplitude(key_apv)[apvid];
    cal_->tunedTail_[apvid] = cal_->tail(key_apv)[apvid];
    cal_->tunedRiseTime_[apvid] = cal_->riseTime(key_apv)[apvid];
    cal_->tunedDecayTime_[apvid] = cal_->decayTime(key_apv)[apvid];
    cal_->tunedTurnOn_[apvid] = cal_->turnOn(key_apv)[apvid];
    cal_->tunedPeakTime_[apvid] = cal_->peakTime(key_apv)[apvid];
    cal_->tunedUndershoot_[apvid] = cal_->undershoot(key_apv)[apvid];
    cal_->tunedBaseline_[apvid] = cal_->baseline(key_apv)[apvid];
    cal_->tunedSmearing_[apvid] = cal_->smearing(key_apv)[apvid];
    cal_->tunedChi2_[apvid] = cal_->chi2(key_apv)[apvid];
  } else {
    cal_->tunedAmplitude_[apvid] = 0;
    cal_->tunedTail_[apvid] = 0;
    cal_->tunedRiseTime_[apvid] = 0;
    cal_->tunedDecayTime_[apvid] = 0;
    cal_->tunedTurnOn_[apvid] = 0;
    cal_->tunedPeakTime_[apvid] = 0;
    cal_->tunedUndershoot_[apvid] = 0;
    cal_->tunedBaseline_[apvid] = 0;
    cal_->tunedSmearing_[apvid] = 0;
    cal_->tunedChi2_[apvid] = 0;
  }
}