1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
|
#include "DQM/SiStripCommissioningAnalysis/interface/CalibrationScanAlgorithm.h"
#include "CondFormats/SiStripObjects/interface/CalibrationScanAnalysis.h"
#include "DataFormats/SiStripCommon/interface/SiStripHistoTitle.h"
#include "DataFormats/SiStripCommon/interface/SiStripEnumsAndStrings.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "DQM/SiStripCommissioningAnalysis/interface/SiStripPulseShape.h"
#include "TProfile.h"
#include "TF1.h"
#include "TH1.h"
#include "TVirtualFitter.h"
#include "TFitResult.h"
#include "TMath.h"
#include "TGraph2D.h"
#include "TH2F.h"
#include "TCanvas.h"
#include "TROOT.h"
#include <iostream>
#include <sstream>
#include <iomanip>
#include <cmath>
#include "Math/MinimizerOptions.h"
using namespace sistrip;
// ----------------------------------------------------------------------------
//
CalibrationScanAlgorithm::CalibrationScanAlgorithm(const edm::ParameterSet& pset, CalibrationScanAnalysis* const anal)
: CommissioningAlgorithm(anal), cal_(nullptr) {}
// ----------------------------------------------------------------------------
//
void CalibrationScanAlgorithm::extract(const std::vector<TH1*>& histos) {
if (!anal()) {
edm::LogWarning(mlCommissioning_) << "[CalibrationScanAlgorithm::" << __func__ << "]"
<< " NULL pointer to base Analysis object!";
return;
}
CommissioningAnalysis* tmp = const_cast<CommissioningAnalysis*>(anal());
cal_ = dynamic_cast<CalibrationScanAnalysis*>(tmp);
if (!cal_) {
edm::LogWarning(mlCommissioning_) << "[CalibrationScanAlgorithm::" << __func__ << "]"
<< " NULL pointer to derived Analysis object!";
return;
}
// Extract FED key from histo title
if (!histos.empty()) {
cal_->fedKey(extractFedKey(histos.front()));
}
// Extract histograms
std::vector<TH1*>::const_iterator ihis = histos.begin();
unsigned int cnt = 0;
for (; ihis != histos.end(); ihis++, cnt++) {
// Check for NULL pointer
if (!(*ihis)) {
continue;
}
// Check name
SiStripHistoTitle title((*ihis)->GetName());
if (title.runType() != sistrip::CALIBRATION_SCAN && title.runType() != sistrip::CALIBRATION_SCAN_DECO) {
cal_->addErrorCode(sistrip::unexpectedTask_);
continue;
}
/// extract isha, vfs and calchan values, as well as filling the histogram objects
Histo histo_temp;
histo_temp.first = *ihis;
histo_temp.first->Sumw2();
histo_temp.second = (*ihis)->GetTitle();
histo_[title.extraInfo()].resize(2);
if (title.channel() % 2 == 0)
histo_[title.extraInfo()][0] = histo_temp;
else
histo_[title.extraInfo()][1] = histo_temp;
}
}
// ----------------------------------------------------------------------------
//
void CalibrationScanAlgorithm::analyse() {
ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2", "Migrad");
ROOT::Math::MinimizerOptions::SetDefaultStrategy(0);
if (!cal_) {
edm::LogWarning(mlCommissioning_) << "[CalibrationScanAlgorithm::" << __func__ << "]"
<< " NULL pointer to derived Analysis object!";
return;
}
////////
TFitResultPtr fit_result;
TF1* fit_function_turnOn = nullptr;
TF1* fit_function_decay = nullptr;
TF1* fit_function_deco = nullptr;
if (cal_->deconv_) {
fit_function_deco = new TF1("fit_function_deco", fdeconv, 0, 400, 7);
fit_function_deco->SetParameters(4, 25, 25, 50, 250, 25, 0.75);
} else {
fit_function_turnOn = new TF1("fit_function_turnOn", fturnOn, 0, 400, 4);
fit_function_decay = new TF1("fit_function_decay", fdecay, 0, 400, 3);
fit_function_turnOn->SetParameters(50, 50, 40, 20);
fit_function_decay->SetParameters(-150, -0.01, -0.1);
}
/// loop over histograms for this fiber
for (auto map_element : histo_) {
// add to the analysis result
cal_->addOneCalibrationPoint(map_element.first);
// stored as integer the scanned isha and vfs values
std::vector<std::string> tokens;
std::string token;
std::istringstream tokenStream(map_element.first);
while (std::getline(tokenStream, token, '_')) {
tokens.push_back(token);
}
scanned_isha_.push_back(std::stoi(tokens.at(1)));
scanned_vfs_.push_back(std::stoi(tokens.at(3)));
// loop on APVs
for (size_t iapv = 0; iapv < 2; iapv++) {
if (!map_element.second[iapv].first) {
edm::LogWarning(mlCommissioning_)
<< " NULL pointer to histogram for: " << map_element.second[iapv].second << " !";
return;
}
cal_->amplitude_[map_element.first][iapv] = 0;
cal_->baseline_[map_element.first][iapv] = 0;
cal_->riseTime_[map_element.first][iapv] = 0;
cal_->turnOn_[map_element.first][iapv] = 0;
cal_->peakTime_[map_element.first][iapv] = 0;
cal_->undershoot_[map_element.first][iapv] = 0;
cal_->tail_[map_element.first][iapv] = 0;
cal_->decayTime_[map_element.first][iapv] = 0;
cal_->smearing_[map_element.first][iapv] = 0;
cal_->chi2_[map_element.first][iapv] = 0;
cal_->isvalid_[map_element.first][iapv] = true;
if (map_element.second[iapv].first->Integral() == 0) {
cal_->isvalid_[map_element.first][iapv] = false;
continue;
}
// rescale the plot
correctDistribution(map_element.second[iapv].first, false);
// from NOTE2009_021 : The charge injection provided by the calibration circuit is known with a precision of 5%;
float error = (map_element.second[iapv].first->GetMaximum() * 0.05);
for (int i = 1; i <= map_element.second[iapv].first->GetNbinsX(); ++i)
map_element.second[iapv].first->SetBinError(i, error);
/////
if (cal_->deconv_) { // deconvolution mode
fit_function_deco->SetParameters(4, 25, 25, 50, 250, 25, 0.75);
fit_result = map_element.second[iapv].first->Fit(fit_function_deco, "QRS");
if (not fit_result.Get()) {
cal_->isvalid_[map_element.first][iapv] = false;
continue;
}
/// make the fit
float maximum_ampl = fit_function_deco->GetMaximum();
float peak_time = fit_function_deco->GetMaximumX();
float baseline = baseLine(fit_function_deco);
float turn_on_time = turnOn(fit_function_deco, baseline);
float rise_time = peak_time - turn_on_time;
// start filling info
cal_->amplitude_[map_element.first][iapv] = maximum_ampl - baseline;
cal_->baseline_[map_element.first][iapv] = baseline;
cal_->riseTime_[map_element.first][iapv] = rise_time;
cal_->turnOn_[map_element.first][iapv] = turn_on_time;
cal_->peakTime_[map_element.first][iapv] = peak_time;
if (fit_function_deco->GetMinimumX() > rise_time)
cal_->undershoot_[map_element.first][iapv] =
100 * (fit_function_deco->GetMinimum() - baseline) / (maximum_ampl - baseline);
else
cal_->undershoot_[map_element.first][iapv] = 0;
// Bin related to peak + 125 ns
int lastBin = map_element.second[iapv].first->FindBin(peak_time + 125);
if (lastBin > map_element.second[iapv].first->GetNbinsX() - 4)
lastBin = map_element.second[iapv].first->GetNbinsX() - 4;
// tail is the amplitude at 5 bx from the maximum
cal_->tail_[map_element.first][iapv] =
100 * (map_element.second[iapv].first->GetBinContent(lastBin) - baseline) / (maximum_ampl - baseline);
// reaches 1/e of the peak amplitude
cal_->decayTime_[map_element.first][iapv] = decayTime(fit_function_deco) - peak_time;
cal_->smearing_[map_element.first][iapv] = 0;
cal_->chi2_[map_element.first][iapv] =
fit_function_deco->GetChisquare() /
(map_element.second[iapv].first->GetNbinsX() - fit_function_deco->GetNpar());
} else {
// peak mode
fit_function_turnOn->SetParameters(50, 50, 40, 20);
fit_function_turnOn->SetRange(fit_function_turnOn->GetXmin(),
map_element.second[iapv].first->GetBinCenter(
map_element.second[iapv].first->GetMaximumBin())); // up to the maximum
fit_result = map_element.second[iapv].first->Fit(fit_function_turnOn, "QSR");
if (not fit_result.Get()) {
cal_->isvalid_[map_element.first][iapv] = false;
continue;
}
/// make the fit
float maximum_ampl = fit_function_turnOn->GetMaximum();
float peak_time = fit_function_turnOn->GetMaximumX();
float baseline = baseLine(fit_function_turnOn);
float turn_on_time = turnOn(fit_function_turnOn, baseline);
float rise_time = peak_time - turn_on_time;
// start filling info
cal_->amplitude_[map_element.first][iapv] = maximum_ampl - baseline;
cal_->baseline_[map_element.first][iapv] = baseline;
cal_->riseTime_[map_element.first][iapv] = rise_time;
cal_->turnOn_[map_element.first][iapv] = turn_on_time;
cal_->peakTime_[map_element.first][iapv] = peak_time;
fit_function_decay->SetParameters(-150, -0.01, -0.1);
fit_function_decay->SetRange(
map_element.second[iapv].first->GetBinCenter(map_element.second[iapv].first->GetMaximumBin()) + 10.,
fit_function_decay->GetXmax()); // up to the maximum
fit_result = map_element.second[iapv].first->Fit(fit_function_decay, "QSR+");
if (fit_result.Get() and fit_result->Status() >= 4) {
cal_->isvalid_[map_element.first][iapv] = false;
continue;
}
cal_->undershoot_[map_element.first][iapv] = 0;
// Bin related to peak + 125 ns
int lastBin = map_element.second[iapv].first->FindBin(peak_time + 125);
if (lastBin > map_element.second[iapv].first->GetNbinsX() - 4)
lastBin = map_element.second[iapv].first->GetNbinsX() - 4;
// tail is the amplitude at 5 bx from the maximum
cal_->tail_[map_element.first][iapv] =
100 * (map_element.second[iapv].first->GetBinContent(lastBin) - baseline) / (maximum_ampl - baseline);
// reaches 1/e of the peak amplitude
cal_->decayTime_[map_element.first][iapv] = decayTime(fit_function_decay) - peak_time;
cal_->smearing_[map_element.first][iapv] = 0;
cal_->chi2_[map_element.first][iapv] =
(fit_function_turnOn->GetChisquare() + fit_function_decay->GetChisquare()) /
(map_element.second[iapv].first->GetNbinsX() - fit_function_turnOn->GetNpar() -
fit_function_decay->GetNpar());
// apply quality requirements
bool isvalid = true;
if (cal_->amplitude_[map_element.first][iapv] < CalibrationScanAnalysis::minAmplitudeThreshold_)
isvalid = false;
if (cal_->baseline_[map_element.first][iapv] < CalibrationScanAnalysis::minBaselineThreshold_)
isvalid = false;
else if (cal_->baseline_[map_element.first][iapv] > CalibrationScanAnalysis::maxBaselineThreshold_)
isvalid = false;
if (cal_->decayTime_[map_element.first][iapv] < CalibrationScanAnalysis::minDecayTimeThreshold_)
isvalid = false;
else if (cal_->decayTime_[map_element.first][iapv] > CalibrationScanAnalysis::maxDecayTimeThreshold_)
isvalid = false;
if (cal_->peakTime_[map_element.first][iapv] < CalibrationScanAnalysis::minPeakTimeThreshold_)
isvalid = false;
else if (cal_->peakTime_[map_element.first][iapv] > CalibrationScanAnalysis::maxPeakTimeThreshold_)
isvalid = false;
if (cal_->riseTime_[map_element.first][iapv] < CalibrationScanAnalysis::minRiseTimeThreshold_)
isvalid = false;
else if (cal_->riseTime_[map_element.first][iapv] > CalibrationScanAnalysis::maxRiseTimeThreshold_)
isvalid = false;
if (cal_->turnOn_[map_element.first][iapv] < CalibrationScanAnalysis::minTurnOnThreshold_)
isvalid = false;
else if (cal_->turnOn_[map_element.first][iapv] > CalibrationScanAnalysis::maxTurnOnThreshold_)
isvalid = false;
if (cal_->chi2_[map_element.first][iapv] > CalibrationScanAnalysis::maxChi2Threshold_)
isvalid = false;
if (not isvalid) {
cal_->amplitude_[map_element.first][iapv] = 0;
cal_->baseline_[map_element.first][iapv] = 0;
cal_->riseTime_[map_element.first][iapv] = 0;
cal_->turnOn_[map_element.first][iapv] = 0;
cal_->peakTime_[map_element.first][iapv] = 0;
cal_->undershoot_[map_element.first][iapv] = 0;
cal_->tail_[map_element.first][iapv] = 0;
cal_->decayTime_[map_element.first][iapv] = 0;
cal_->smearing_[map_element.first][iapv] = 0;
cal_->chi2_[map_element.first][iapv] = 0;
cal_->isvalid_[map_element.first][iapv] = false;
}
}
}
}
if (fit_function_deco)
delete fit_function_deco;
if (fit_function_decay)
delete fit_function_decay;
if (fit_function_turnOn)
delete fit_function_turnOn;
}
// ------
void CalibrationScanAlgorithm::correctDistribution(TH1* histo, const bool& isShape) const {
// 5 events per point in the TM loop
// total signal is obtained by summing 16 strips of the same calChan
if (not isShape) {
for (int iBin = 0; iBin < histo->GetNbinsX(); iBin++) {
histo->SetBinContent(iBin + 1, -histo->GetBinContent(iBin + 1) / 16.);
histo->SetBinContent(iBin + 1, histo->GetBinContent(iBin + 1) / 5.);
}
} else
histo->Scale(1. / histo->Integral());
}
// ----------------------------------------------------------------------------
float CalibrationScanAlgorithm::baseLine(TF1* f) {
float x = f->GetXmin();
float xmax = 10;
float baseline = 0;
int npoints = 0;
for (; x < xmax; x += 0.1) {
baseline += f->Eval(x);
npoints++;
}
return baseline / npoints;
}
// ----------------------------------------------------------------------------
float CalibrationScanAlgorithm::turnOn(
TF1* f, const float& baseline) { // should happen within 100 ns in both deco and peak modes
float max_amplitude = f->GetMaximum();
float time = 10.;
for (; time < 100 && (f->Eval(time) - baseline) < 0.05 * (max_amplitude - baseline); time += 0.1) {
} // flucutation higher than 5% of the pulse height
return time;
}
// ----------------------------------------------------------------------------
float CalibrationScanAlgorithm::decayTime(
TF1* f) { // if we approximate the decay to an exp(-t/tau), in one constant unit, the amplited is reduced by e^{-1}
float xval = std::max(f->GetXmin(), f->GetMaximumX());
float max_amplitude = f->GetMaximum();
float x = xval;
for (; x < 1000;
x = x +
0.1) { // 1000 is a reasoable large bound to compute the decay time .. in case the function is bad it is useful to break the loop
if (f->Eval(x) < max_amplitude * exp(-1))
break;
}
return x;
}
// --- function to extract the VFS value corresponding to decay time of 125ns, then ISHA close to 50 ns
void CalibrationScanAlgorithm::tuneIndependently(const int& iapv,
const float& targetRiseTime,
const float& targetDecayTime) {
std::map<int, std::vector<float> > decayTime_vs_vfs;
TString name;
int imap = 0;
for (auto map_element : histo_) {
// only consider isha values in the middle of the scanned range
if (scanned_isha_.at(imap) <= CalibrationScanAnalysis::minISHAforVFSTune_ or
scanned_isha_.at(imap) >= CalibrationScanAnalysis::maxISHAforVFSTune_) {
imap++;
continue;
}
if (cal_->isValid(map_element.first)[iapv])
decayTime_vs_vfs[scanned_vfs_.at(imap)].push_back(cal_->decayTime(map_element.first)[iapv]);
if (name == "") { // store the base name
name = Form("%s", map_element.second[iapv].first->GetName());
name.ReplaceAll("_" + map_element.first, "");
}
imap++;
}
// sort before taking the median
for (auto iter : decayTime_vs_vfs)
sort(iter.second.begin(), iter.second.end());
name.ReplaceAll("ExpertHisto_", "");
// transform the dependance vs vfs in graph
cal_->decayTime_vs_vfs_.push_back(new TGraph());
cal_->decayTime_vs_vfs_.back()->SetName(Form("decayTime_%s", name.Data()));
// transform the dependance vs isha in graph
cal_->riseTime_vs_isha_.push_back(new TGraph());
cal_->riseTime_vs_isha_.back()->SetName(Form("riseTime_%s", name.Data()));
if (!decayTime_vs_vfs.empty()) {
int ipoint = 0;
for (auto map_element : decayTime_vs_vfs) {
if (!map_element.second.empty()) {
cal_->decayTime_vs_vfs_.at(iapv)->SetPoint(
ipoint, map_element.second.at(round(map_element.second.size() / 2)), map_element.first);
ipoint++;
}
}
double max_apv =
TMath::MaxElement(cal_->decayTime_vs_vfs_.at(iapv)->GetN(), cal_->decayTime_vs_vfs_.at(iapv)->GetY());
double min_apv =
TMath::MinElement(cal_->decayTime_vs_vfs_.at(iapv)->GetN(), cal_->decayTime_vs_vfs_.at(iapv)->GetY());
cal_->vfs_[iapv] = cal_->decayTime_vs_vfs_.at(iapv)->Eval(targetDecayTime);
// avoid extrapolations
if (cal_->vfs_[iapv] < min_apv)
cal_->vfs_[iapv] = min_apv;
else if (cal_->vfs_[iapv] > max_apv)
cal_->vfs_[iapv] = max_apv;
// value for each isha but different ISHA
std::map<int, std::vector<float> > riseTime_vs_isha;
imap = 0;
// store for each isha value all rise time (changing isha)
for (auto map_element : histo_) {
if (std::abs(scanned_vfs_.at(imap) - cal_->vfs_[iapv]) < CalibrationScanAnalysis::VFSrange_ and
cal_->isValid(map_element.first)[iapv]) //around chosen VFS by \pm 20
riseTime_vs_isha[scanned_isha_.at(imap)].push_back(cal_->riseTime(map_element.first)[iapv]);
if (name == "") {
name = Form("%s", map_element.second[iapv].first->GetName());
name.ReplaceAll("_" + map_element.first, "");
}
imap++;
}
// sort before taking the median
for (auto iter : riseTime_vs_isha)
sort(iter.second.begin(), iter.second.end());
name.ReplaceAll("ExpertHisto_", "");
////
if (!riseTime_vs_isha.empty()) {
int ipoint = 0;
for (auto map_element : riseTime_vs_isha) {
if (!map_element.second.empty()) {
cal_->riseTime_vs_isha_.at(iapv)->SetPoint(
ipoint, map_element.second.at(round(map_element.second.size() / 2)), map_element.first);
ipoint++;
}
}
double max_apv =
TMath::MaxElement(cal_->riseTime_vs_isha_.at(iapv)->GetN(), cal_->riseTime_vs_isha_.at(iapv)->GetY());
double min_apv =
TMath::MinElement(cal_->riseTime_vs_isha_.at(iapv)->GetN(), cal_->riseTime_vs_isha_.at(iapv)->GetY());
cal_->isha_[iapv] = cal_->riseTime_vs_isha_.at(iapv)->Eval(targetRiseTime);
if (cal_->isha_[iapv] < min_apv)
cal_->isha_[iapv] = min_apv;
else if (cal_->isha_[iapv] > max_apv)
cal_->isha_[iapv] = max_apv;
} else
cal_->isha_[iapv] = -1;
}
}
////////////// Simultaneously tune isha and vfs
void CalibrationScanAlgorithm::tuneSimultaneously(const int& iapv,
const float& targetRiseTime,
const float& targetDecayTime) {
// Build 2D graph for each APV with rise and decay time trend vs ISHA and VFS
cal_->decayTime_vs_isha_vfs_.push_back(new TGraph2D());
cal_->riseTime_vs_isha_vfs_.push_back(new TGraph2D());
// store for each vfs value all decay time (changing vfs)
TString name_apv;
int ipoint_apv = 0;
int imap = 0;
for (auto map_element : histo_) {
if (cal_->isValid(map_element.first)[iapv]) {
cal_->decayTime_vs_isha_vfs_.at(iapv)->SetPoint(
ipoint_apv, scanned_isha_.at(imap), scanned_vfs_.at(imap), cal_->decayTime(map_element.first)[iapv]);
cal_->riseTime_vs_isha_vfs_.at(iapv)->SetPoint(
ipoint_apv, scanned_isha_.at(imap), scanned_vfs_.at(imap), cal_->riseTime(map_element.first)[iapv]);
ipoint_apv++;
}
if (name_apv == "") { // store the base name
name_apv = Form("%s", map_element.second[iapv].first->GetName());
name_apv.ReplaceAll("_" + map_element.first, "");
}
imap++;
}
name_apv.ReplaceAll("ExpertHisto_", "");
cal_->decayTime_vs_isha_vfs_.at(iapv)->SetName(Form("decayTime_%s", name_apv.Data()));
cal_->riseTime_vs_isha_vfs_.at(iapv)->SetName(Form("riseTime_%s", name_apv.Data()));
// Define 2D histogram for the distance between values and target
TH2F* hist_decay_apv = new TH2F("hist_decay_apv",
"hist_decay_apv",
500,
*min_element(scanned_isha_.begin(), scanned_isha_.end()),
*max_element(scanned_isha_.begin(), scanned_isha_.end()),
500,
*min_element(scanned_vfs_.begin(), scanned_vfs_.end()),
*max_element(scanned_vfs_.begin(), scanned_vfs_.end()));
TH2F* hist_rise_apv = (TH2F*)hist_decay_apv->Clone();
hist_rise_apv->SetName("hist_rise_apv");
hist_rise_apv->Reset();
TH2F* hist_distance = (TH2F*)hist_decay_apv->Clone();
hist_distance->SetName("hist_distance");
hist_distance->Reset();
for (int iBin = 1; iBin <= hist_decay_apv->GetNbinsX(); iBin++) {
for (int jBin = 1; jBin <= hist_decay_apv->GetNbinsY(); jBin++) {
if (ipoint_apv != 0) {
if (cal_->decayTime_vs_isha_vfs_.at(iapv)->GetN() > 10) // to make sure the interpolation can work
hist_decay_apv->SetBinContent(
iBin,
jBin,
cal_->decayTime_vs_isha_vfs_.at(iapv)->Interpolate(hist_decay_apv->GetXaxis()->GetBinCenter(iBin),
hist_decay_apv->GetYaxis()->GetBinCenter(jBin)));
if (cal_->riseTime_vs_isha_vfs_.at(iapv)->GetN() > 10)
hist_rise_apv->SetBinContent(
iBin,
jBin,
cal_->riseTime_vs_isha_vfs_.at(iapv)->Interpolate(hist_rise_apv->GetXaxis()->GetBinCenter(iBin),
hist_rise_apv->GetYaxis()->GetBinCenter(jBin)));
}
}
}
// further smoothing --> a smooth behaviour is indeed expected
hist_decay_apv->Smooth();
hist_rise_apv->Smooth();
for (int iBin = 1; iBin <= hist_decay_apv->GetNbinsX(); iBin++) {
for (int jBin = 1; jBin <= hist_decay_apv->GetNbinsY(); jBin++) {
hist_distance->SetBinContent(
iBin,
jBin,
sqrt(pow((hist_decay_apv->GetBinContent(iBin, jBin) - targetDecayTime) / targetDecayTime, 2) +
pow((hist_rise_apv->GetBinContent(iBin, jBin) - targetRiseTime) / targetRiseTime, 2)));
}
}
int minx, miny, minz;
hist_distance->GetMinimumBin(minx, miny, minz);
cal_->isha_[iapv] = round(hist_distance->GetXaxis()->GetBinCenter(minx));
cal_->vfs_[iapv] = round(hist_distance->GetYaxis()->GetBinCenter(miny));
delete hist_decay_apv;
delete hist_rise_apv;
delete hist_distance;
}
void CalibrationScanAlgorithm::fillTunedObservables(const int& apvid) {
// find the closest isha and vfs for each APV
int distance_apv = 10000;
// find close by ISHA
for (size_t i = 0; i < scanned_isha_.size(); i++) {
if (std::abs(scanned_isha_.at(i) - cal_->bestISHA().at(apvid)) < distance_apv) {
distance_apv = std::abs(scanned_isha_.at(i) - cal_->bestISHA().at(apvid));
cal_->tunedISHA_.at(apvid) = scanned_isha_.at(i);
}
}
distance_apv = 10000;
// find close by VFS
for (size_t i = 0; i < scanned_vfs_.size(); i++) {
if (std::abs(scanned_vfs_.at(i) - cal_->bestVFS().at(apvid)) < distance_apv) {
distance_apv = std::abs(scanned_vfs_.at(i) - cal_->bestVFS().at(apvid));
cal_->tunedVFS_.at(apvid) = scanned_vfs_.at(i);
}
}
///
std::string key_apv = std::string(Form("isha_%d_vfs_%d", cal_->tunedISHA().at(apvid), cal_->tunedVFS().at(apvid)));
if (!cal_->amplitude(key_apv).empty()) {
cal_->tunedAmplitude_[apvid] = cal_->amplitude(key_apv)[apvid];
cal_->tunedTail_[apvid] = cal_->tail(key_apv)[apvid];
cal_->tunedRiseTime_[apvid] = cal_->riseTime(key_apv)[apvid];
cal_->tunedDecayTime_[apvid] = cal_->decayTime(key_apv)[apvid];
cal_->tunedTurnOn_[apvid] = cal_->turnOn(key_apv)[apvid];
cal_->tunedPeakTime_[apvid] = cal_->peakTime(key_apv)[apvid];
cal_->tunedUndershoot_[apvid] = cal_->undershoot(key_apv)[apvid];
cal_->tunedBaseline_[apvid] = cal_->baseline(key_apv)[apvid];
cal_->tunedSmearing_[apvid] = cal_->smearing(key_apv)[apvid];
cal_->tunedChi2_[apvid] = cal_->chi2(key_apv)[apvid];
} else {
cal_->tunedAmplitude_[apvid] = 0;
cal_->tunedTail_[apvid] = 0;
cal_->tunedRiseTime_[apvid] = 0;
cal_->tunedDecayTime_[apvid] = 0;
cal_->tunedTurnOn_[apvid] = 0;
cal_->tunedPeakTime_[apvid] = 0;
cal_->tunedUndershoot_[apvid] = 0;
cal_->tunedBaseline_[apvid] = 0;
cal_->tunedSmearing_[apvid] = 0;
cal_->tunedChi2_[apvid] = 0;
}
}
|