1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
|
#include "DQM/SiStripCommissioningAnalysis/interface/OptoScanAlgorithm.h"
#include "CondFormats/SiStripObjects/interface/OptoScanAnalysis.h"
#include "DataFormats/SiStripCommon/interface/SiStripHistoTitle.h"
#include "DataFormats/SiStripCommon/interface/SiStripEnumsAndStrings.h"
#include "DQM/SiStripCommissioningAnalysis/src/Utility.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "TProfile.h"
#include "TH1.h"
#include <iostream>
#include <sstream>
#include <iomanip>
using namespace sistrip;
// ----------------------------------------------------------------------------
//
OptoScanAlgorithm::OptoScanAlgorithm(const edm::ParameterSet& pset, OptoScanAnalysis* const anal)
: CommissioningAlgorithm(anal),
histos_(4, std::vector<Histo>(3, Histo(nullptr, ""))),
targetGain_(pset.getParameter<double>("TargetGain")) {
edm::LogInfo(mlCommissioning_) << "[PedestalsAlgorithm::" << __func__ << "]"
<< " Set target gain to: " << targetGain_;
}
// ----------------------------------------------------------------------------
//
void OptoScanAlgorithm::extract(const std::vector<TH1*>& histos) {
if (!anal()) {
edm::LogWarning(mlCommissioning_) << "[OptoScanAlgorithm::" << __func__ << "]"
<< " NULL pointer to Analysis object!";
return;
}
// Check number of histograms
if (histos.size() != 12) {
anal()->addErrorCode(sistrip::numberOfHistos_);
}
// Extract FED key from histo title
if (!histos.empty())
anal()->fedKey(extractFedKey(histos.front()));
// Extract histograms
std::vector<TH1*>::const_iterator ihis = histos.begin();
for (; ihis != histos.end(); ihis++) {
// Check for NULL pointer
if (!(*ihis)) {
continue;
}
// Check name
SiStripHistoTitle title((*ihis)->GetName());
if (title.runType() != sistrip::OPTO_SCAN) {
anal()->addErrorCode(sistrip::unexpectedTask_);
continue;
}
// Extract gain setting and digital high/low info
uint16_t gain = sistrip::invalid_;
if (title.extraInfo().find(sistrip::extrainfo::gain_) != std::string::npos) {
std::stringstream ss;
ss << title.extraInfo().substr(
title.extraInfo().find(sistrip::extrainfo::gain_) + (sizeof(sistrip::extrainfo::gain_) - 1), 1);
ss >> std::dec >> gain;
}
uint16_t digital = sistrip::invalid_;
if (title.extraInfo().find(sistrip::extrainfo::digital_) != std::string::npos) {
std::stringstream ss;
ss << title.extraInfo().substr(
title.extraInfo().find(sistrip::extrainfo::digital_) + (sizeof(sistrip::extrainfo::digital_) - 1), 1);
ss >> std::dec >> digital;
}
bool baseline_rms = false;
if (title.extraInfo().find(sistrip::extrainfo::baselineRms_) != std::string::npos) {
baseline_rms = true;
}
if (gain <= 3) {
if (digital <= 1) {
histos_[gain][digital].first = *ihis;
histos_[gain][digital].second = (*ihis)->GetName();
} else if (baseline_rms) {
histos_[gain][2].first = *ihis;
histos_[gain][2].second = (*ihis)->GetName();
} else {
anal()->addErrorCode(sistrip::unexpectedExtraInfo_);
}
} else {
anal()->addErrorCode(sistrip::unexpectedExtraInfo_);
}
}
}
// ----------------------------------------------------------------------------
//
void OptoScanAlgorithm::analyse() {
if (!anal()) {
edm::LogWarning(mlCommissioning_) << "[OptoScanAlgorithm::" << __func__ << "]"
<< " NULL pointer to base Analysis object!";
return;
}
CommissioningAnalysis* tmp = const_cast<CommissioningAnalysis*>(anal());
OptoScanAnalysis* anal = dynamic_cast<OptoScanAnalysis*>(tmp);
if (!anal) {
edm::LogWarning(mlCommissioning_) << "[OptoScanAlgorithm::" << __func__ << "]"
<< " NULL pointer to derived Analysis object!";
return;
}
// Iterate through four gain settings
for (uint16_t igain = 0; igain < 4; igain++) {
// Select histos appropriate for gain setting
TH1* base_his = histos_[igain][0].first;
TH1* peak_his = histos_[igain][1].first;
TH1* noise_his = histos_[igain][2].first;
if (!base_his) {
anal->addErrorCode(sistrip::nullPtr_);
return;
}
if (!peak_his) {
anal->addErrorCode(sistrip::nullPtr_);
return;
}
if (!noise_his) {
anal->addErrorCode(sistrip::nullPtr_);
return;
}
TProfile* base_histo = dynamic_cast<TProfile*>(base_his);
if (!base_histo) {
anal->addErrorCode(sistrip::nullPtr_);
return;
}
TProfile* peak_histo = dynamic_cast<TProfile*>(peak_his);
if (!peak_histo) {
anal->addErrorCode(sistrip::nullPtr_);
return;
}
TProfile* noise_histo = dynamic_cast<TProfile*>(noise_his);
if (!noise_histo) {
anal->addErrorCode(sistrip::nullPtr_);
return;
}
// Check histogram binning
uint16_t nbins = static_cast<uint16_t>(peak_histo->GetNbinsX());
if (static_cast<uint16_t>(base_histo->GetNbinsX()) != nbins) {
anal->addErrorCode(sistrip::numberOfBins_);
if (static_cast<uint16_t>(base_histo->GetNbinsX()) < nbins) {
nbins = static_cast<uint16_t>(base_histo->GetNbinsX());
}
}
// Some containers
std::vector<float> peak_contents(0);
std::vector<float> peak_errors(0);
std::vector<float> peak_entries(0);
std::vector<float> base_contents(0);
std::vector<float> base_errors(0);
std::vector<float> base_entries(0);
std::vector<float> noise_contents(0);
std::vector<float> noise_errors(0);
std::vector<float> noise_entries(0);
float peak_max = -1. * sistrip::invalid_;
float peak_min = 1. * sistrip::invalid_;
float base_max = -1. * sistrip::invalid_;
float base_min = 1. * sistrip::invalid_;
float noise_max = -1. * sistrip::invalid_;
float noise_min = 1. * sistrip::invalid_;
// Transfer histogram contents/errors/stats to containers
for (uint16_t ibin = 0; ibin < nbins; ibin++) {
// Peak histogram
peak_contents.push_back(peak_histo->GetBinContent(ibin + 1));
peak_errors.push_back(peak_histo->GetBinError(ibin + 1));
peak_entries.push_back(peak_histo->GetBinEntries(ibin + 1));
if (peak_entries[ibin]) {
if (peak_contents[ibin] > peak_max) {
peak_max = peak_contents[ibin];
}
if (peak_contents[ibin] < peak_min && ibin) {
peak_min = peak_contents[ibin];
}
}
// Base histogram
base_contents.push_back(base_histo->GetBinContent(ibin + 1));
base_errors.push_back(base_histo->GetBinError(ibin + 1));
base_entries.push_back(base_histo->GetBinEntries(ibin + 1));
if (base_entries[ibin]) {
if (base_contents[ibin] > base_max) {
base_max = base_contents[ibin];
}
if (base_contents[ibin] < base_min && ibin) {
base_min = base_contents[ibin];
}
}
// Noise histogram
noise_contents.push_back(noise_histo->GetBinContent(ibin + 1));
noise_errors.push_back(noise_histo->GetBinError(ibin + 1));
noise_entries.push_back(noise_histo->GetBinEntries(ibin + 1));
if (noise_entries[ibin]) {
if (noise_contents[ibin] > noise_max) {
noise_max = noise_contents[ibin];
}
if (noise_contents[ibin] < noise_min && ibin) {
noise_min = noise_contents[ibin];
}
}
}
// Find "zero light" level and error
//@@ record bias setting used for zero light level
//@@ zero light error changes wrt gain setting ???
float zero_light_level = sistrip::invalid_;
float zero_light_error = sistrip::invalid_;
for (uint16_t ibin = 0; ibin < nbins; ibin++) {
if (base_entries[ibin]) {
zero_light_level = base_contents[ibin];
zero_light_error = base_errors[ibin];
break;
}
}
float zero_light_thres = sistrip::invalid_;
if (zero_light_level <= sistrip::maximum_ && zero_light_error <= sistrip::maximum_) {
zero_light_thres = zero_light_level + 5. * zero_light_error;
} else {
std::stringstream ss;
ss << sistrip::invalidZeroLightLevel_ << "ForGain" << igain;
anal->addErrorCode(ss.str());
continue;
}
// Find range of base histogram
float base_range = base_max - base_min;
// Find overlapping max/min region that constrains range of linear fit
float max = peak_max < base_max ? peak_max : base_max;
float min = peak_min > base_min ? peak_min : base_min;
float range = max - min;
// Container identifying whether samples from 'base' histo are above "zero light"
std::vector<bool> above_zero_light;
above_zero_light.resize(3, true);
// Linear fits to top of peak and base curves and one to bottom of base curve
sistrip::LinearFit peak_high;
sistrip::LinearFit base_high;
sistrip::LinearFit base_low;
// Iterate through histogram bins
uint16_t peak_bin = 0;
uint16_t base_bin = 0;
uint16_t low_bin = 0;
for (uint16_t ibin = 0; ibin < nbins; ibin++) {
// Record whether consecutive samples from 'base' histo are above the "zero light" level
if (base_entries[ibin]) {
above_zero_light.erase(above_zero_light.begin());
if (base_contents[ibin] > zero_light_thres) {
above_zero_light.push_back(true);
} else {
above_zero_light.push_back(false);
}
if (above_zero_light.size() != 3) {
above_zero_light.resize(3, false);
}
}
// Linear fit to peak histogram
if (peak_entries[ibin] && peak_contents[ibin] > (min + 0.2 * range) &&
peak_contents[ibin] < (min + 0.8 * range)) {
if (!peak_bin) {
peak_bin = ibin;
}
if ((ibin - peak_bin) < 10) {
peak_high.add(ibin, peak_contents[ibin]); //@@ should weight using bin error or bin contents (sqrt(N)/N)
}
}
// Linear fit to base histogram
if (base_entries[ibin] && base_contents[ibin] > (min + 0.2 * range) &&
base_contents[ibin] < (min + 0.8 * range)) {
if (!base_bin) {
base_bin = ibin;
}
if ((ibin - base_bin) < 10) {
base_high.add(ibin, base_contents[ibin]); //@@ should weight using bin error or bin contents (sqrt(N)/N)
}
}
// Low linear fit to base histogram
if (base_entries[ibin] &&
//@@ above_zero_light[0] && above_zero_light[1] && above_zero_light[2] &&
base_contents[ibin] > (base_min + 0.2 * base_range) && base_contents[ibin] < (base_min + 0.6 * base_range)) {
if (!low_bin) {
low_bin = ibin;
}
if ((ibin - low_bin) < 10) {
base_low.add(ibin, base_contents[ibin]); //@@ should weight using bin error or bin contents (sqrt(N)/N)
}
}
}
// Extract width between two curves at midpoint within range
float mid = min + 0.5 * range;
sistrip::LinearFit::Params peak_params;
sistrip::LinearFit::Params base_params;
peak_high.fit(peak_params);
base_high.fit(base_params);
float peak_pos = sistrip::invalid_;
float base_pos = sistrip::invalid_;
float width = sistrip::invalid_;
if (peak_params.b_ > 0.) {
peak_pos = (mid - peak_params.a_) / peak_params.b_;
}
if (base_params.b_ > 0.) {
base_pos = (mid - base_params.a_) / base_params.b_;
}
if (base_pos < sistrip::valid_ && peak_pos < sistrip::valid_) {
width = base_pos - peak_pos;
}
// Extrapolate to zero light to find "lift off"
sistrip::LinearFit::Params low_params;
base_low.fit(low_params);
float lift_off = sistrip::invalid_;
if (low_params.b_ > 0.) {
lift_off = (zero_light_level - low_params.a_) / low_params.b_;
}
// ---------- Set all parameters ----------
// Slope of baseline
if (low_params.b_ > 0.) {
anal->baseSlope_[igain] = low_params.b_;
}
// Check "lift off" value and set bias setting accordingly
if (lift_off <= sistrip::maximum_) {
anal->bias_[igain] = static_cast<uint16_t>(lift_off) + 2;
} else {
anal->bias_[igain] = OptoScanAnalysis::defaultBiasSetting_;
}
// Calculate "lift off" (in mA)
if (lift_off <= sistrip::maximum_) {
anal->liftOff_[igain] = 0.45 * lift_off;
}
// Calculate laser threshold (in mA)
if (width < sistrip::invalid_) {
anal->threshold_[igain] = 0.45 * (lift_off - width / 2.);
}
// Set "zero light" level
anal->zeroLight_[igain] = zero_light_level;
// Set link noise
uint16_t bin_number = sistrip::invalid_;
if (anal->threshold_[igain] < sistrip::valid_) {
// Old calculation, used in commissioning in 2008
// always leads to zero link noise
// bin_number = static_cast<uint16_t>( anal->threshold_[igain] / 0.45 );
// New calculation asked by Karl et al, for commissioning in 2009
bin_number = (uint16_t)(lift_off + width / 3.);
}
if (bin_number < sistrip::valid_) {
if (bin_number < noise_contents.size()) {
anal->linkNoise_[igain] = noise_contents[bin_number];
} else {
anal->addErrorCode(sistrip::unexpectedBinNumber_);
}
}
// Calculate tick mark height
if (low_params.b_ <= sistrip::maximum_ && width <= sistrip::maximum_) {
anal->tickHeight_[igain] = width * low_params.b_;
}
// Set measured gain
if (anal->tickHeight_[igain] < sistrip::invalid_ - 1.) {
anal->measGain_[igain] = anal->tickHeight_[igain] * OptoScanAnalysis::fedAdcGain_ / 0.800;
} else {
anal->measGain_[igain] = sistrip::invalid_;
}
} // gain loop
// Iterate through four gain settings and identify optimum gain setting
const float target_gain =
targetGain_; //0.863; // changed from 0.8 to avoid choice of low tickheights (Xtof, SL, 15/6/2009)
float diff_in_gain = sistrip::invalid_;
for (uint16_t igain = 0; igain < 4; igain++) {
// Check for sensible gain value
if (anal->measGain_[igain] > sistrip::maximum_) {
continue;
}
// Find optimum gain setting
if (fabs(anal->measGain_[igain] - target_gain) < diff_in_gain) {
anal->gain_ = igain;
diff_in_gain = fabs(anal->measGain_[igain] - target_gain);
}
}
// Check optimum gain setting
if (anal->gain_ > sistrip::maximum_) {
anal->gain_ = OptoScanAnalysis::defaultGainSetting_;
}
}
// ----------------------------------------------------------------------------
//
CommissioningAlgorithm::Histo OptoScanAlgorithm::histo(const uint16_t& gain, const uint16_t& digital_level) const {
if (gain <= 3 && digital_level <= 1) {
return histos_[gain][digital_level];
} else {
return Histo(nullptr, "");
}
}
|