1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
|
#include "DQM/SiStripCommissioningAnalysis/interface/PedsFullNoiseAlgorithm.h"
#include "CondFormats/SiStripObjects/interface/PedsFullNoiseAnalysis.h"
#include "DataFormats/SiStripCommon/interface/SiStripHistoTitle.h"
#include "DataFormats/SiStripCommon/interface/SiStripEnumsAndStrings.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "TProfile.h"
#include "TH1.h"
#include "TH2.h"
#include "TF1.h"
#include "TFitResult.h"
#include "TMath.h"
#include "Math/DistFunc.h"
#include "Math/ProbFuncMathCore.h"
#include "Fit/BinData.h"
#include "HFitInterface.h"
#include "Math/GoFTest.h"
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace sistrip;
using namespace std;
// ----------------------------------------------------------------------------
//
PedsFullNoiseAlgorithm::PedsFullNoiseAlgorithm(const edm::ParameterSet& pset, PedsFullNoiseAnalysis* const anal)
: CommissioningAlgorithm(anal),
hPeds_(nullptr, ""),
hNoise_(nullptr, ""),
hNoise2D_(nullptr, ""),
maxDriftResidualCut_(pset.getParameter<double>("MaxDriftResidualCut")),
minStripNoiseCut_(pset.getParameter<double>("MinStripNoiseCut")),
maxStripNoiseCut_(pset.getParameter<double>("MaxStripNoiseCut")),
maxStripNoiseSignificanceCut_(pset.getParameter<double>("MaxStripNoiseSignificanceCut")),
adProbabCut_(pset.getParameter<double>("AdProbabCut")),
ksProbabCut_(pset.getParameter<double>("KsProbabCut")),
generateRandomHisto_(pset.getParameter<bool>("GenerateRandomHisto")),
jbProbabCut_(pset.getParameter<double>("JbProbabCut")),
chi2ProbabCut_(pset.getParameter<double>("Chi2ProbabCut")),
kurtosisCut_(pset.getParameter<double>("KurtosisCut")),
integralTailCut_(pset.getParameter<double>("IntegralTailCut")),
integralNsigma_(pset.getParameter<int>("IntegralNsigma")),
ashmanDistance_(pset.getParameter<double>("AshmanDistance")),
amplitudeRatio_(pset.getParameter<double>("AmplitudeRatio")) {
LogDebug(mlCommissioning_) << "[PedsFullNoiseAlgorithm::" << __func__ << "]"
<< " Set maximum drift of the mean value to: " << maxDriftResidualCut_
<< " Set minimum noise value to: " << minStripNoiseCut_
<< " Set maximum noise value to: " << maxStripNoiseCut_
<< " Set maximum noise significance value to: " << maxStripNoiseSignificanceCut_
<< " Set minimum Anderson-Darling p-value to: " << adProbabCut_
<< " Set minimum Kolmogorov-Smirnov p-value to: " << ksProbabCut_
<< " Set minimum Jacque-Bera p-value to: " << jbProbabCut_
<< " Set minimum Chi2 p-value to: " << chi2ProbabCut_
<< " Set N-sigma for the integral to : " << integralNsigma_
<< " Set maximum integral tail at N-sigma to : " << integralTailCut_
<< " Set maximum Kurtosis to : " << kurtosisCut_;
}
// ----------------------------------------------------------------------------
//
void PedsFullNoiseAlgorithm::extract(const std::vector<TH1*>& histos) {
if (!anal()) {
edm::LogWarning(mlCommissioning_) << "[PedsFullNoiseAlgorithm::" << __func__ << "]"
<< " NULL pointer to Analysis object!";
return;
}
// Check number of histograms --> Pedestal, noise and noise2D
if (histos.size() != 3) {
anal()->addErrorCode(sistrip::numberOfHistos_);
}
// Extract FED key from histo title --> i.e. APV pairs or LLD channel
if (!histos.empty()) {
anal()->fedKey(extractFedKey(histos.front()));
}
// Extract 1D histograms
std::vector<TH1*>::const_iterator ihis = histos.begin();
for (; ihis != histos.end(); ihis++) {
// Check for NULL pointer
if (!(*ihis)) {
continue;
}
SiStripHistoTitle title((*ihis)->GetName());
if (title.runType() != sistrip::PEDS_FULL_NOISE) {
anal()->addErrorCode(sistrip::unexpectedTask_);
continue;
}
// Extract peds histos
if (title.extraInfo().find(sistrip::extrainfo::roughPedestals_) != std::string::npos) {
//@@ something here for rough peds?
} else if (title.extraInfo().find(sistrip::extrainfo::pedestals_) != std::string::npos) {
hPeds_.first = *ihis;
hPeds_.second = (*ihis)->GetName();
} else if (title.extraInfo().find(sistrip::extrainfo::commonMode_) != std::string::npos) {
//@@ something here for CM plots?
} else if (title.extraInfo().find(sistrip::extrainfo::noiseProfile_) != std::string::npos) {
//@@ something here for noise profile plot?
hNoise_.first = *ihis;
hNoise_.second = (*ihis)->GetName();
} else if (title.extraInfo().find(sistrip::extrainfo::noise2D_) != std::string::npos) {
hNoise2D_.first = *ihis;
hNoise2D_.second = (*ihis)->GetName();
} else {
anal()->addErrorCode(sistrip::unexpectedExtraInfo_);
}
}
}
// resetting vectors
void PedsFullNoiseAlgorithm::reset(PedsFullNoiseAnalysis* ana) {
for (size_t iapv = 0; iapv < ana->peds_.size(); iapv++) {
ana->pedsMean_[iapv] = 0.;
ana->rawMean_[iapv] = 0.;
ana->noiseMean_[iapv] = 0.;
ana->pedsSpread_[iapv] = 0.;
ana->noiseSpread_[iapv] = 0.;
ana->rawSpread_[iapv] = 0.;
ana->pedsMax_[iapv] = 0.;
ana->pedsMin_[iapv] = 0.;
ana->rawMax_[iapv] = 0.;
ana->rawMin_[iapv] = 0.;
ana->noiseMax_[iapv] = 0.;
ana->noiseMin_[iapv] = 0.;
for (size_t istrip = 0; istrip < ana->peds_[iapv].size(); istrip++) {
ana->peds_[iapv][istrip] = 0.;
ana->noise_[iapv][istrip] = 0.;
ana->raw_[iapv][istrip] = 0.;
ana->adProbab_[iapv][istrip] = 0.;
ana->ksProbab_[iapv][istrip] = 0.;
ana->jbProbab_[iapv][istrip] = 0.;
ana->chi2Probab_[iapv][istrip] = 0.;
ana->residualRMS_[iapv][istrip] = 0.;
ana->residualSigmaGaus_[iapv][istrip] = 0.;
ana->noiseSignificance_[iapv][istrip] = 0.;
ana->residualMean_[iapv][istrip] = 0.;
ana->residualSkewness_[iapv][istrip] = 0.;
ana->residualKurtosis_[iapv][istrip] = 0.;
ana->residualIntegralNsigma_[iapv][istrip] = 0.;
ana->residualIntegral_[iapv][istrip] = 0.;
ana->deadStripBit_[iapv][istrip] = 0;
ana->badStripBit_[iapv][istrip] = 0;
}
}
}
// -----------------------------------------------------------------------------
//
void PedsFullNoiseAlgorithm::analyse() {
// check base analysis object
if (!anal()) {
edm::LogWarning(mlCommissioning_) << "[PedsFullNoiseAlgorithm::" << __func__ << "]"
<< " NULL pointer to base Analysis object!";
return;
}
CommissioningAnalysis* tmp = const_cast<CommissioningAnalysis*>(anal());
PedsFullNoiseAnalysis* ana = dynamic_cast<PedsFullNoiseAnalysis*>(tmp);
// check PedsFullNoiseAnalysis object
if (!ana) {
edm::LogWarning(mlCommissioning_) << "[PedsFullNoiseAlgorithm::" << __func__ << "]"
<< " NULL pointer to derived Analysis object!";
return;
}
// check if the histograms exists
if (!hPeds_.first) {
ana->addErrorCode(sistrip::nullPtr_);
return;
}
if (!hNoise_.first) {
ana->addErrorCode(sistrip::nullPtr_);
return;
}
if (!hNoise2D_.first) {
ana->addErrorCode(sistrip::nullPtr_);
return;
}
// take the histograms
TProfile* histoPeds = dynamic_cast<TProfile*>(hPeds_.first);
TProfile* histoNoiseMean = dynamic_cast<TProfile*>(hNoise_.first);
TH2S* histoNoise = dynamic_cast<TH2S*>(hNoise2D_.first);
// Make sanity checks about pointers
if (not histoPeds) {
ana->addErrorCode(sistrip::nullPtr_);
return;
}
if (not histoNoiseMean) {
ana->addErrorCode(sistrip::nullPtr_);
return;
}
if (not histoNoise) {
ana->addErrorCode(sistrip::nullPtr_);
return;
}
// check the binning --> each x-axis bin is 1 strip -> 2APV per lldChannel -> 256 strips
if (histoPeds->GetNbinsX() != 256) {
ana->addErrorCode(sistrip::numberOfBins_);
return;
}
//check the binning --> each x-axis bin is 1 strip -> 2APV per lldChannel -> 256 strips
if (histoNoiseMean->GetNbinsX() != 256) {
ana->addErrorCode(sistrip::numberOfBins_);
return;
}
//check the binning --> each y-axis bin is 1 strip -> 2APV per lldChannel -> 256 strips
if (histoNoise->GetNbinsY() != 256) {
ana->addErrorCode(sistrip::numberOfBins_);
return;
}
//Reset values
reset(ana);
// loop on each strip
uint32_t apvID = -1;
// Save basic information at strip / APV level
vector<float> ped_max;
vector<float> ped_min;
vector<float> raw_max;
vector<float> raw_min;
vector<float> noise_max;
vector<float> noise_min;
// loop on each strip in the lldChannel
for (int iStrip = 0; iStrip < histoPeds->GetNbinsX(); iStrip++) {
if (iStrip < histoPeds->GetNbinsX() / 2)
apvID = 0;
else
apvID = 1;
int stripBin = 0;
if (iStrip >= 128)
stripBin = iStrip - 128;
else
stripBin = iStrip;
ana->peds_[apvID][stripBin] = histoPeds->GetBinContent(iStrip + 1); // pedestal value
ana->noise_[apvID][stripBin] = histoNoiseMean->GetBinContent(iStrip + 1); // noise value
ana->raw_[apvID][stripBin] = histoPeds->GetBinError(iStrip + 1); // raw noise value
ana->pedsMean_[apvID] += ana->peds_[apvID][stripBin]; // mean pedestal
ana->rawMean_[apvID] += ana->raw_[apvID][stripBin]; // mean raw noise
ana->noiseMean_[apvID] += ana->noise_[apvID][stripBin]; // mean noise
// max pedestal
if (ped_max.size() < apvID + 1)
ped_max.push_back(ana->peds_[apvID][stripBin]);
else {
if (ana->peds_[apvID][stripBin] > ped_max.at(apvID))
ped_max.at(apvID) = ana->peds_[apvID][stripBin];
}
// min pedestal
if (ped_min.size() < apvID + 1)
ped_min.push_back(ana->peds_[apvID][stripBin]);
else {
if (ana->peds_[apvID][stripBin] < ped_min.at(apvID))
ped_min.at(apvID) = ana->peds_[apvID][stripBin]; // min pedestal
}
// max noise
if (noise_max.size() < apvID + 1)
noise_max.push_back(ana->noise_[apvID][stripBin]);
else {
if (ana->noise_[apvID][stripBin] > noise_max.at(apvID))
noise_max.at(apvID) = ana->noise_[apvID][stripBin];
}
// min noise
if (noise_min.size() < apvID + 1)
noise_min.push_back(ana->noise_[apvID][stripBin]);
else {
if (ana->noise_[apvID][stripBin] < noise_min.at(apvID))
noise_min.at(apvID) = ana->noise_[apvID][stripBin];
}
// max raw
if (raw_max.size() < apvID + 1)
raw_max.push_back(ana->raw_[apvID][stripBin]);
else {
if (ana->raw_[apvID][stripBin] > raw_max.at(apvID))
raw_max.at(apvID) = ana->raw_[apvID][stripBin];
}
// min raw
if (raw_min.size() < apvID + 1)
raw_min.push_back(ana->raw_[apvID][stripBin]);
else {
if (ana->raw_[apvID][stripBin] < raw_min.at(apvID))
raw_min.at(apvID) = ana->raw_[apvID][stripBin];
}
}
// Mean values
for (unsigned int iApv = 0; iApv < ana->pedsMean_.size(); iApv++) {
ana->pedsMean_.at(iApv) /= (ana->peds_[iApv].size()); // calculate mean pedestal per APV
ana->rawMean_.at(iApv) /= (ana->raw_[iApv].size()); // calculate mean raw noise per APV
ana->noiseMean_.at(iApv) /= (ana->noise_[iApv].size()); // calculate mean noise per APV
}
// Min and Max
for (unsigned int iApv = 0; iApv < ped_max.size(); iApv++) {
if (ped_max.at(iApv) > sistrip::maximum_)
ana->pedsMax_.at(iApv) = sistrip::maximum_;
else if (ped_max.at(iApv) < -1. * sistrip::maximum_)
ana->pedsMax_.at(iApv) = -1. * sistrip::maximum_;
else
ana->pedsMax_.at(iApv) = ped_max.at(iApv);
if (ped_min.at(iApv) > sistrip::maximum_)
ana->pedsMin_.at(iApv) = sistrip::maximum_;
else if (ped_min.at(iApv) < -1. * sistrip::maximum_)
ana->pedsMin_.at(iApv) = -1. * sistrip::maximum_;
else
ana->pedsMin_.at(iApv) = ped_min.at(iApv);
if (noise_max.at(iApv) > sistrip::maximum_)
ana->noiseMax_.at(iApv) = sistrip::maximum_;
else if (noise_max.at(iApv) < -1. * sistrip::maximum_)
ana->noiseMax_.at(iApv) = -1. * sistrip::maximum_;
else
ana->noiseMax_.at(iApv) = noise_max.at(iApv);
if (noise_min.at(iApv) > sistrip::maximum_)
ana->noiseMin_.at(iApv) = sistrip::maximum_;
else if (noise_min.at(iApv) < -1. * sistrip::maximum_)
ana->noiseMin_.at(iApv) = -1. * sistrip::maximum_;
else
ana->noiseMin_.at(iApv) = noise_min.at(iApv);
if (raw_max.at(iApv) > sistrip::maximum_)
ana->rawMax_.at(iApv) = sistrip::maximum_;
else if (raw_max.at(iApv) < -1. * sistrip::maximum_)
ana->rawMax_.at(iApv) = -1. * sistrip::maximum_;
else
ana->rawMax_.at(iApv) = raw_max.at(iApv);
if (raw_min.at(iApv) > sistrip::maximum_)
ana->rawMin_.at(iApv) = sistrip::maximum_;
else if (raw_min.at(iApv) < -1. * sistrip::maximum_)
ana->rawMin_.at(iApv) = -1. * sistrip::maximum_;
else
ana->rawMin_.at(iApv) = raw_min.at(iApv);
}
// Calculate the spread for noise and pedestal
for (int iStrip = 0; iStrip < histoNoiseMean->GetNbinsX(); iStrip++) {
if (iStrip < histoNoiseMean->GetNbinsX() / 2)
apvID = 0;
else
apvID = 1;
ana->pedsSpread_[apvID] += pow(histoPeds->GetBinContent(iStrip + 1) - ana->pedsMean_.at(apvID), 2);
ana->noiseSpread_[apvID] += pow(histoNoiseMean->GetBinContent(iStrip + 1) - ana->noiseMean_.at(apvID), 2);
ana->rawSpread_[apvID] += pow(histoPeds->GetBinError(iStrip + 1) - ana->rawMean_.at(apvID), 2);
}
for (unsigned int iApv = 0; iApv < ana->pedsSpread_.size(); iApv++) {
ana->pedsSpread_[iApv] = sqrt(ana->pedsSpread_[iApv]) / sqrt(ana->peds_[iApv].size() - 1);
ana->noiseSpread_[iApv] = sqrt(ana->noiseSpread_[iApv]) / sqrt(ana->noise_[iApv].size() - 1);
ana->rawSpread_[iApv] = sqrt(ana->rawSpread_[iApv]) / sqrt(ana->raw_[iApv].size() - 1);
}
// loop on each strip in the lldChannel
TH1S* histoResidualStrip = new TH1S("histoResidualStrip",
"",
histoNoise->GetNbinsX(),
histoNoise->GetXaxis()->GetXmin(),
histoNoise->GetXaxis()->GetXmax());
histoResidualStrip->Sumw2();
histoResidualStrip->SetDirectory(nullptr);
TF1* fitFunc = new TF1("fitFunc", "gaus(0)", histoNoise->GetXaxis()->GetXmin(), histoNoise->GetXaxis()->GetXmax());
TF1* fit2Gaus = nullptr;
TH1F* randomHisto = nullptr;
TFitResultPtr result;
for (int iStrip = 0; iStrip < histoNoise->GetNbinsY(); iStrip++) {
// tell which APV
if (iStrip < histoNoise->GetNbinsY() / 2)
apvID = 0;
else
apvID = 1;
histoResidualStrip->Reset();
int stripBin = 0;
if (iStrip >= 128)
stripBin = iStrip - 128;
else
stripBin = iStrip;
for (int iBinX = 0; iBinX < histoNoise->GetNbinsX(); iBinX++) {
histoResidualStrip->SetBinContent(iBinX + 1, histoNoise->GetBinContent(iBinX + 1, iStrip + 1));
histoResidualStrip->SetBinError(iBinX + 1, histoNoise->GetBinError(iBinX + 1, iStrip + 1));
}
if (histoResidualStrip->Integral() == 0) { // dead strip --> i.e. no data
// set default values
ana->adProbab_[apvID][stripBin] = 0;
ana->ksProbab_[apvID][stripBin] = 0;
ana->jbProbab_[apvID][stripBin] = 0;
ana->chi2Probab_[apvID][stripBin] = 0;
ana->noiseSignificance_[apvID][stripBin] = 0;
ana->residualMean_[apvID][stripBin] = 0;
ana->residualRMS_[apvID][stripBin] = 0;
ana->residualSigmaGaus_[apvID][stripBin] = 0;
ana->residualSkewness_[apvID][stripBin] = 0;
ana->residualKurtosis_[apvID][stripBin] = 0;
ana->residualIntegralNsigma_[apvID][stripBin] = 0;
ana->residualIntegral_[apvID][stripBin] = 0;
ana->deadStrip_[apvID].push_back(stripBin);
ana->deadStripBit_[apvID][stripBin] = 1;
ana->badStripBit_[apvID][stripBin] = 0;
SiStripFecKey fec_key(ana->fecKey());
LogTrace(mlDqmClient_) << "DeadStrip: fecCrate "
<< " " << fec_key.fecCrate() << " fecSlot " << fec_key.fecSlot() << " fecRing "
<< fec_key.fecRing() << " ccuAddr " << fec_key.ccuAddr() << " ccChan "
<< fec_key.ccuChan() << " lldChan " << fec_key.lldChan() << " apvID " << apvID
<< " stripID " << iStrip;
continue;
}
// set / calculated basic quantities
ana->residualMean_[apvID][stripBin] = histoResidualStrip->GetMean();
ana->residualRMS_[apvID][stripBin] = histoResidualStrip->GetRMS();
ana->residualSkewness_[apvID][stripBin] = histoResidualStrip->GetSkewness();
ana->residualKurtosis_[apvID][stripBin] = histoResidualStrip->GetKurtosis();
ana->noiseSignificance_[apvID][stripBin] =
(ana->noise_[apvID][stripBin] - ana->noiseMean_[apvID]) / ana->noiseSpread_[apvID];
ana->residualIntegral_[apvID][stripBin] = histoResidualStrip->Integral();
ana->residualIntegralNsigma_[apvID][stripBin] =
(histoResidualStrip->Integral(histoResidualStrip->FindBin(ana->residualMean_[apvID][stripBin] +
ana->residualRMS_[apvID][stripBin] * integralNsigma_),
histoResidualStrip->GetNbinsX() + 1) +
histoResidualStrip->Integral(
0,
histoResidualStrip->FindBin(ana->residualMean_[apvID][stripBin] -
ana->residualRMS_[apvID][stripBin] * integralNsigma_))) /
ana->residualIntegral_[apvID][stripBin];
// performing a Gaussian fit of the residual distribution
fitFunc->SetRange(histoNoise->GetXaxis()->GetXmin(), histoNoise->GetXaxis()->GetXmax());
fitFunc->SetParameters(ana->residualIntegral_[apvID][stripBin],
ana->residualMean_[apvID][stripBin],
ana->residualRMS_[apvID][stripBin]);
result = histoResidualStrip->Fit(fitFunc, "QSRN");
// Good gaussian fit
if (result.Get()) {
ana->residualSigmaGaus_[apvID][stripBin] = fitFunc->GetParameter(2);
ana->chi2Probab_[apvID][stripBin] = result->Prob();
// jacque bera probability
float jbVal =
(ana->residualIntegral_[apvID][stripBin] / 6) *
(pow(ana->residualSkewness_[apvID][stripBin], 2) + pow(ana->residualKurtosis_[apvID][stripBin], 2) / 4);
ana->jbProbab_[apvID][stripBin] = ROOT::Math::chisquared_cdf_c(jbVal, 2);
//Kolmogorov Smirnov and Anderson Darlong
if (randomHisto == nullptr)
randomHisto = (TH1F*)histoResidualStrip->Clone("randomHisto");
randomHisto->Reset();
randomHisto->SetDirectory(nullptr);
if (generateRandomHisto_) { ///
randomHisto->FillRandom("fitFunc", histoResidualStrip->Integral());
if (randomHisto->Integral() != 0) {
ana->ksProbab_[apvID][stripBin] = histoResidualStrip->KolmogorovTest(randomHisto, "N");
ana->adProbab_[apvID][stripBin] = histoResidualStrip->AndersonDarlingTest(randomHisto);
} else {
ana->ksProbab_[apvID][stripBin] = 0;
ana->adProbab_[apvID][stripBin] = 0;
}
} else {
randomHisto->Add(fitFunc);
if (randomHisto->Integral() != 0) {
ana->ksProbab_[apvID][stripBin] = histoResidualStrip->KolmogorovTest(randomHisto, "N");
ROOT::Fit::BinData data1;
ROOT::Fit::BinData data2;
ROOT::Fit::FillData(data1, histoResidualStrip, nullptr);
data2.Initialize(randomHisto->GetNbinsX() + 1, 1);
for (int ibin = 0; ibin < randomHisto->GetNbinsX(); ibin++) {
if (histoResidualStrip->GetBinContent(ibin + 1) != 0 or randomHisto->GetBinContent(ibin + 1) >= 1)
data2.Add(randomHisto->GetBinCenter(ibin + 1),
randomHisto->GetBinContent(ibin + 1),
randomHisto->GetBinError(ibin + 1));
}
double probab, value;
ROOT::Math::GoFTest::AndersonDarling2SamplesTest(data1, data2, probab, value);
ana->adProbab_[apvID][stripBin] = probab;
} else {
ana->ksProbab_[apvID][stripBin] = 0;
ana->adProbab_[apvID][stripBin] = 0;
}
}
}
// start applying selections storing output
bool badStripFlag = false;
ana->deadStripBit_[apvID][stripBin] = 0; // is not dead if the strip has data
if (fabs(ana->residualMean_[apvID][stripBin]) > maxDriftResidualCut_ and not badStripFlag) { //mean value
ana->shiftedStrip_[apvID].push_back(stripBin);
badStripFlag = true;
}
if (ana->residualRMS_[apvID][stripBin] < minStripNoiseCut_ and not badStripFlag) { // low noise
ana->lowNoiseStrip_[apvID].push_back(stripBin);
badStripFlag = true;
}
if (ana->residualRMS_[apvID][stripBin] > maxStripNoiseCut_ and not badStripFlag) { // large noise
ana->largeNoiseStrip_[apvID].push_back(stripBin);
badStripFlag = true;
}
if (fabs(ana->noiseSignificance_[apvID][stripBin]) > maxStripNoiseSignificanceCut_ and
not badStripFlag) { // large noise significance
ana->largeNoiseSignificance_[apvID].push_back(stripBin);
badStripFlag = true;
}
if (result.Get() and result->Status() != 0) // bad fit status
ana->badFitStatus_[apvID].push_back(stripBin);
if (ana->adProbab_[apvID][stripBin] < adProbabCut_ and not badStripFlag) // bad AD p-value --> store the strip-id
ana->badADProbab_[apvID].push_back(stripBin);
if (ana->ksProbab_[apvID][stripBin] < ksProbabCut_ and not badStripFlag) // bad KS p-value --> store the strip-id
ana->badKSProbab_[apvID].push_back(stripBin);
if (ana->jbProbab_[apvID][stripBin] < jbProbabCut_ and not badStripFlag) // bad JB p-value --> store the strip-id
ana->badJBProbab_[apvID].push_back(stripBin);
if (ana->chi2Probab_[apvID][stripBin] < chi2ProbabCut_ and
not badStripFlag) // bad CHI2 p-value --> store the strip-id
ana->badChi2Probab_[apvID].push_back(stripBin);
if (ana->adProbab_[apvID][stripBin] < adProbabCut_ and ana->ksProbab_[apvID][stripBin] < ksProbabCut_ and
ana->jbProbab_[apvID][stripBin] < jbProbabCut_ and ana->chi2Probab_[apvID][stripBin] < chi2ProbabCut_)
badStripFlag = true; // bad strip is flagged as bad by all the methods
if (ana->residualKurtosis_[apvID][stripBin] > kurtosisCut_ and
ana->residualIntegralNsigma_[apvID][stripBin] > integralTailCut_ and not badStripFlag) { // bad tails
ana->badTailStrip_[apvID].push_back(stripBin);
badStripFlag = true;
}
if (badStripFlag) { // loop for double peaked
fit2Gaus = new TF1("dgaus",
"[0]*exp(-((x-[1])*(x-[1]))/(2*[2]*[2]))+[3]*exp(-((x-[4])*(x-[4]))/(2*[5]*[5]))",
histoNoise->GetXaxis()->GetXmin(),
histoNoise->GetXaxis()->GetXmax());
fit2Gaus->SetParameter(0, fitFunc->GetParameter(0) / 2);
fit2Gaus->SetParameter(3, fitFunc->GetParameter(0) / 2);
fit2Gaus->SetParameter(1, 1.);
fit2Gaus->SetParameter(4, -1.);
fit2Gaus->SetParameter(2, fitFunc->GetParameter(2));
fit2Gaus->SetParameter(5, fitFunc->GetParameter(2));
fit2Gaus->SetParLimits(1, 0., histoNoise->GetXaxis()->GetXmax());
fit2Gaus->SetParLimits(4, histoNoise->GetXaxis()->GetXmin(), 0);
result = histoResidualStrip->Fit(fit2Gaus, "QSR");
// ashman distance
float ashman = TMath::Power(2, 0.5) * abs(fit2Gaus->GetParameter(1) - fit2Gaus->GetParameter(4)) /
(sqrt(pow(fit2Gaus->GetParameter(2), 2) + pow(fit2Gaus->GetParameter(5), 2)));
// amplitude
float amplitudeRatio = std::min(fit2Gaus->GetParameter(0), fit2Gaus->GetParameter(3)) /
std::max(fit2Gaus->GetParameter(0), fit2Gaus->GetParameter(3));
if (ashman > ashmanDistance_ and amplitudeRatio > amplitudeRatio_)
ana->badDoublePeakStrip_[apvID].push_back(stripBin);
}
if (badStripFlag) { // save the final bit
ana->badStrip_[apvID].push_back(stripBin);
ana->badStripBit_[apvID][stripBin] = 1;
SiStripFecKey fec_key(ana->fecKey());
LogTrace(mlDqmClient_) << "BadStrip: fecCrate "
<< " " << fec_key.fecCrate() << " fecSlot " << fec_key.fecSlot() << " fecRing "
<< fec_key.fecRing() << " ccuAddr " << fec_key.ccuAddr() << " ccChan "
<< fec_key.ccuChan() << " lldChan " << fec_key.lldChan() << " apvID " << apvID
<< " stripID " << stripBin;
} else
ana->badStripBit_[apvID][stripBin] = 0;
}
ped_max.clear();
ped_min.clear();
raw_max.clear();
raw_min.clear();
noise_max.clear();
noise_min.clear();
if (histoResidualStrip)
delete histoResidualStrip;
if (fitFunc)
delete fitFunc;
if (randomHisto)
delete randomHisto;
if (fit2Gaus)
delete fit2Gaus;
}
|