1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
#include "DQM/SiStripCommissioningAnalysis/interface/SamplingAlgorithm.h"
#include "CondFormats/SiStripObjects/interface/SamplingAnalysis.h"
#include "DataFormats/SiStripCommon/interface/SiStripHistoTitle.h"
#include "DataFormats/SiStripCommon/interface/SiStripEnumsAndStrings.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "DQM/SiStripCommissioningAnalysis/interface/SiStripPulseShape.h"
#include "TProfile.h"
#include "TF1.h"
#include <iostream>
#include <sstream>
#include <iomanip>
#include <cmath>
using namespace sistrip;
// ----------------------------------------------------------------------------
//
SamplingAlgorithm::SamplingAlgorithm(const edm::ParameterSet& pset, SamplingAnalysis* const anal, uint32_t latencyCode)
: CommissioningAlgorithm(anal),
histo_(nullptr, ""),
deconv_fitter_(nullptr),
peak_fitterA_(nullptr),
peak_fitterB_(nullptr),
latencyCode_(latencyCode),
samp_(nullptr) {
peak_fitterA_ = new TF1("peak_fitterA", fpeak_convoluted, -4800, 0, 5);
peak_fitterA_->SetNpx(2000);
peak_fitterA_->FixParameter(0, 0);
peak_fitterA_->SetParLimits(1, 0, 4800);
peak_fitterA_->SetParLimits(2, 0, 20);
peak_fitterA_->FixParameter(3, 50);
peak_fitterA_->SetParLimits(4, 0, 75);
peak_fitterA_->SetParameters(0., 1250, 10, 50, 10);
peak_fitterB_ = new TF1("peak_fitterB", fpeak_convoluted, -100, 100, 5);
peak_fitterB_->SetNpx(200);
peak_fitterB_->FixParameter(0, 0);
peak_fitterB_->SetParLimits(1, -100, 100);
peak_fitterB_->SetParLimits(2, 0, 20);
peak_fitterB_->FixParameter(3, 50);
peak_fitterB_->SetParLimits(4, 0, 75);
peak_fitterB_->SetParameters(0., -50, 10, 50, 10);
deconv_fitter_ = new TF1("deconv_fitter", fdeconv_convoluted, -50, 50, 5);
deconv_fitter_->SetNpx(1000);
deconv_fitter_->FixParameter(0, 0);
deconv_fitter_->SetParLimits(1, -50, 50);
deconv_fitter_->SetParLimits(2, 0, 200);
deconv_fitter_->SetParLimits(3, 5, 100);
deconv_fitter_->FixParameter(3, 50);
deconv_fitter_->SetParLimits(4, 0, 75);
deconv_fitter_->SetParameters(0., -2.82, 0.96, 50, 20);
}
// ----------------------------------------------------------------------------
//
void SamplingAlgorithm::extract(const std::vector<TH1*>& histos) {
if (!anal()) {
edm::LogWarning(mlCommissioning_) << "[SamplingAlgorithm::" << __func__ << "]"
<< " NULL pointer to Analysis object!";
return;
}
CommissioningAnalysis* tmp = const_cast<CommissioningAnalysis*>(anal());
samp_ = dynamic_cast<SamplingAnalysis*>(tmp);
if (!samp_) {
edm::LogWarning(mlCommissioning_) << "[SamplingAlgorithm::" << __func__ << "]"
<< " NULL pointer to derived Analysis object!";
return;
}
// Check
if (histos.size() != 1 && histos.size() != 2) {
samp_->addErrorCode(sistrip::numberOfHistos_);
}
// Extract FED key from histo title
if (!histos.empty()) {
samp_->fedKey(extractFedKey(histos.front()));
}
// Extract
std::vector<TH1*>::const_iterator ihis = histos.begin();
for (; ihis != histos.end(); ihis++) {
// Check pointer
if (!(*ihis)) {
edm::LogWarning(mlCommissioning_) << " NULL pointer to histogram!";
continue;
}
// Check name
SiStripHistoTitle title((*ihis)->GetName());
if (title.runType() != sistrip::APV_LATENCY && title.runType() != sistrip::FINE_DELAY) {
samp_->addErrorCode(sistrip::unexpectedTask_);
continue;
}
// Set the mode for later fits
samp_->runType_ = title.runType();
// Set the granularity
samp_->granularity_ = title.granularity();
// Extract timing histo
if (title.extraInfo().find(sistrip::extrainfo::clusterCharge_) != std::string::npos) {
histo_.first = *ihis;
histo_.second = (*ihis)->GetName();
}
}
}
// ----------------------------------------------------------------------------
//
void SamplingAlgorithm::analyse() {
if (!samp_) {
edm::LogWarning(mlCommissioning_) << "[SamplingAlgorithm::" << __func__ << "]"
<< " NULL pointer to derived Analysis object!";
return;
}
TProfile* prof = (TProfile*)(histo_.first);
if (!prof) {
edm::LogWarning(mlCommissioning_) << " NULL pointer to histogram!";
return;
}
// set the right error mode: rms
prof->SetErrorOption(" ");
//that should not be needed, but it seems histos are stored with error option " " and errors "s" in all cases.
//it MUST be removed if the DQM (?) bug is solved
for (int i = 0; i < prof->GetNbinsX(); ++i) {
if (prof->GetBinEntries(i) > 0)
prof->SetBinError(i, prof->GetBinError(i) / sqrt(prof->GetBinEntries(i)));
}
// prune the profile
pruneProfile(prof);
// correct for the binning
correctBinning(prof);
// correct for clustering effects
correctProfile(prof, samp_->sOnCut_);
// fit depending on the mode
if (samp_->runType_ == sistrip::APV_LATENCY) {
// initialize the fit (overal latency)
float max = prof->GetBinCenter(prof->GetMaximumBin());
float ampl = prof->GetMaximum();
peak_fitterA_->SetParameters(0., 50 - max, ampl / 20., 50, 10);
// fit
if (prof->Fit(peak_fitterA_, "Q") == 0)
prof->Fit(peak_fitterA_, "QEM");
// Set monitorables
samp_->max_ = peak_fitterA_->GetMaximumX();
samp_->error_ = peak_fitterA_->GetParError(1);
} else { // sistrip::FINE_DELAY
// initialize the fit (overal latency)
float max = prof->GetBinCenter(prof->GetMaximumBin());
float ampl = prof->GetMaximum();
deconv_fitter_->SetParameters(0., -max, ampl / 10., 50, 20);
peak_fitterB_->SetParameters(0., 50 - max, ampl / 20., 50, 10);
if (latencyCode_ & 0x80) { // deconv mode
// fit
if (prof->Fit(deconv_fitter_, "Q") == 0)
prof->Fit(deconv_fitter_, "QEM");
// Set monitorables
samp_->max_ = deconv_fitter_->GetMaximumX();
samp_->error_ = deconv_fitter_->GetParError(1);
} else { // peak mode
// fit
if (prof->Fit(peak_fitterB_, "Q") == 0)
prof->Fit(peak_fitterB_, "QEM");
// Set monitorables
samp_->max_ = peak_fitterB_->GetMaximumX();
samp_->error_ = peak_fitterB_->GetParError(1);
}
}
}
// ----------------------------------------------------------------------------
//
void SamplingAlgorithm::pruneProfile(TProfile* profile) const {
// loop over bins to find the max stat
uint32_t nbins = profile->GetNbinsX();
uint32_t max = 0;
for (uint32_t bin = 1; bin <= nbins; ++bin)
max = max < profile->GetBinEntries(bin) ? uint32_t(profile->GetBinEntries(bin)) : max;
// loop over bins to clean
uint32_t min = max / 10;
for (uint32_t bin = 1; bin <= nbins; ++bin)
if (profile->GetBinEntries(bin) < min) {
profile->SetBinContent(bin, 0.);
profile->SetBinError(bin, 0.);
}
}
// ----------------------------------------------------------------------------
//
void SamplingAlgorithm::correctBinning(TProfile* prof) const {
prof->GetXaxis()->SetLimits(prof->GetXaxis()->GetXmin() - prof->GetBinWidth(1) / 2.,
prof->GetXaxis()->GetXmax() - prof->GetBinWidth(1) / 2.);
}
// ----------------------------------------------------------------------------
//
void SamplingAlgorithm::correctProfile(TProfile* profile, float SoNcut) const {
if (!samp_) {
return;
}
uint32_t nbins = profile->GetNbinsX();
float min = samp_->limit(SoNcut);
for (uint32_t bin = 1; bin <= nbins; ++bin)
if (profile->GetBinContent(bin) < min) {
profile->SetBinContent(bin, 0.);
profile->SetBinError(bin, 0.);
profile->SetBinEntries(bin, 0);
} else {
profile->SetBinContent(
bin, profile->GetBinEntries(bin) * samp_->correctMeasurement(profile->GetBinContent(bin), SoNcut));
}
}
|