1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
|
// -*- C++ -*-
//
// Package: SiStripFineDelayHit
// Class: SiStripFineDelayHit
//
/**\class SiStripFineDelayHit SiStripFineDelayHit.cc DQM/SiStripCommissioningSources/plugins/tracking/SiStripFineDelayHit.cc
Description: <one line class summary>
Implementation:
<Notes on implementation>
*/
//
// Original Author: Christophe DELAERE
// Created: Fri Nov 17 10:52:42 CET 2006
//
//
// system include files
#include <memory>
#include <utility>
#include <vector>
#include <algorithm>
// user include files
#include "FWCore/Framework/interface/Frameworkfwd.h"
#include "FWCore/Framework/interface/Event.h"
#include "FWCore/Framework/interface/MakerMacros.h"
#include "FWCore/Framework/interface/ConsumesCollector.h"
#include "FWCore/Utilities/interface/InputTag.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "DataFormats/Common/interface/Ref.h"
#include "DataFormats/DetId/interface/DetId.h"
#include "DataFormats/TrackReco/interface/TrackFwd.h"
#include "DataFormats/TrackReco/interface/Track.h"
#include "DataFormats/TrackReco/interface/TrackExtra.h"
#include "DataFormats/SiStripDetId/interface/StripSubdetector.h"
#include "DataFormats/TrackerRecHit2D/interface/SiPixelRecHit.h"
#include "DataFormats/TrackerRecHit2D/interface/SiStripRecHit2DCollection.h"
#include "DataFormats/TrackerRecHit2D/interface/SiStripMatchedRecHit2DCollection.h"
#include "DataFormats/Candidate/interface/Candidate.h"
#include "DataFormats/SiStripCommon/interface/ConstantsForRunType.h"
#include "DataFormats/SiStripCommon/interface/SiStripFedKey.h"
#include "CondFormats/SiStripObjects/interface/FedChannelConnection.h"
#include "DataFormats/GeometryVector/interface/GlobalPoint.h"
#include "DataFormats/GeometryVector/interface/GlobalVector.h"
#include "DataFormats/GeometryVector/interface/LocalVector.h"
#include "Geometry/TrackerGeometryBuilder/interface/TrackerGeometry.h"
#include "Geometry/Records/interface/TrackerDigiGeometryRecord.h"
#include "Geometry/CommonDetUnit/interface/GeomDetType.h"
#include "Geometry/CommonDetUnit/interface/GeomDet.h"
#include "Geometry/CommonTopologies/interface/Topology.h"
#include "Geometry/CommonTopologies/interface/StripTopology.h"
#include "TrackingTools/PatternTools/interface/Trajectory.h"
#include "DQM/SiStripCommissioningSources/plugins/tracking/SiStripFineDelayHit.h"
#include "DQM/SiStripCommissioningSources/plugins/tracking/SiStripFineDelayTLA.h"
#include "DQM/SiStripCommissioningSources/plugins/tracking/SiStripFineDelayTOF.h"
// ROOT includes
#include "TMath.h"
//
// constructors and destructor
//
SiStripFineDelayHit::SiStripFineDelayHit(const edm::ParameterSet& iConfig) : event_(nullptr) {
//register your products
produces<edm::DetSetVector<SiStripRawDigi> >("FineDelaySelection");
//now do what ever other initialization is needed
anglefinder_ = new SiStripFineDelayTLA(iConfig, consumesCollector());
cosmic_ = iConfig.getParameter<bool>("cosmic");
field_ = iConfig.getParameter<bool>("MagneticField");
maxAngle_ = iConfig.getParameter<double>("MaxTrackAngle");
minTrackP2_ = iConfig.getParameter<double>("MinTrackMomentum") * iConfig.getParameter<double>("MinTrackMomentum");
maxClusterDistance_ = iConfig.getParameter<double>("MaxClusterDistance");
/*
clusterLabel_ = iConfig.getParameter<edm::InputTag>("ClustersLabel");
trackLabel_ = iConfig.getParameter<edm::InputTag>("TracksLabel");
seedLabel_ = iConfig.getParameter<edm::InputTag>("SeedsLabel");
inputModuleLabel_ = iConfig.getParameter<edm::InputTag>( "InputModuleLabel" ) ;
digiLabel_ = iConfig.getParameter<edm::InputTag>("DigiLabel");
*/
clustersToken_ =
consumes<edmNew::DetSetVector<SiStripCluster> >(iConfig.getParameter<edm::InputTag>("ClustersLabel"));
trackToken_ = consumes<std::vector<Trajectory> >(iConfig.getParameter<edm::InputTag>("TracksLabel"));
trackCollectionToken_ = consumes<reco::TrackCollection>(iConfig.getParameter<edm::InputTag>("TracksLabel"));
seedcollToken_ = consumes<TrajectorySeedCollection>(iConfig.getParameter<edm::InputTag>("SeedsLabel"));
inputModuleToken_ = consumes<SiStripEventSummary>(iConfig.getParameter<edm::InputTag>("InputModuleLabel"));
digiToken_ = consumes<edm::DetSetVector<SiStripDigi> >(iConfig.getParameter<edm::InputTag>("DigiLabel"));
homeMadeClusters_ = iConfig.getParameter<bool>("NoClustering");
explorationWindow_ = iConfig.getParameter<uint32_t>("ExplorationWindow");
noTracking_ = iConfig.getParameter<bool>("NoTracking");
mode_ = 0;
tkGeomToken_ = esConsumes();
tTopoToken_ = esConsumes();
fedCablingToken_ = esConsumes<edm::Transition::BeginRun>();
noiseToken_ = esConsumes();
}
SiStripFineDelayHit::~SiStripFineDelayHit() {
// do anything here that needs to be done at desctruction time
// (e.g. close files, deallocate resources etc.)
delete anglefinder_;
}
//
// member functions
//
SiStripFineDelayHit::DeviceMask SiStripFineDelayHit::deviceMask(const StripSubdetector::SubDetector subdet,
const int substructure,
const TrackerTopology* tkrTopo) {
uint32_t rootDetId = 0;
uint32_t maskDetId = 0;
switch (subdet) {
case StripSubdetector::TIB: {
rootDetId = tkrTopo->tibDetId(substructure, 0, 0, 0, 0, 0).rawId();
maskDetId = tkrTopo->tibDetId(15, 0, 0, 0, 0, 0).rawId();
break;
}
case StripSubdetector::TID: {
rootDetId = tkrTopo->tidDetId(substructure > 0 ? 2 : 1, abs(substructure), 0, 0, 0, 0).rawId();
maskDetId = tkrTopo->tidDetId(3, 15, 0, 0, 0, 0).rawId();
break;
}
case StripSubdetector::TOB: {
rootDetId = tkrTopo->tobDetId(substructure, 0, 0, 0, 0).rawId();
maskDetId = tkrTopo->tobDetId(15, 0, 0, 0, 0).rawId();
break;
}
case StripSubdetector::TEC: {
rootDetId = tkrTopo->tecDetId(substructure > 0 ? 2 : 1, abs(substructure), 0, 0, 0, 0, 0).rawId();
maskDetId = tkrTopo->tecDetId(3, 15, 0, 0, 0, 0, 0).rawId();
break;
}
default:
break;
}
return std::make_pair(maskDetId, rootDetId);
}
std::vector<std::pair<uint32_t, std::pair<double, double> > > SiStripFineDelayHit::detId(
const TrackerGeometry& tracker,
const TrackerTopology* tkrTopo,
const reco::Track* tk,
const std::vector<Trajectory>& trajVec,
const StripSubdetector::SubDetector subdet,
const int substructure) {
if (substructure == 0xff)
return detId(tracker, tkrTopo, tk, trajVec, 0, 0);
// first determine the root detId we are looking for
DeviceMask mask = deviceMask(subdet, substructure, tkrTopo);
// then call the method that loops on recHits
return detId(tracker, tkrTopo, tk, trajVec, mask.first, mask.second);
}
std::vector<std::pair<uint32_t, std::pair<double, double> > > SiStripFineDelayHit::detId(
const TrackerGeometry& tracker,
const TrackerTopology* tkrTopo,
const reco::Track* tk,
const std::vector<Trajectory>& trajVec,
const uint32_t& maskDetId,
const uint32_t& rootDetId) {
bool onDisk = ((maskDetId == tkrTopo->tidDetId(3, 15, 0, 0, 0, 0).rawId()) ||
(maskDetId == tkrTopo->tecDetId(3, 15, 0, 0, 0, 0, 0).rawId()));
std::vector<std::pair<uint32_t, std::pair<double, double> > > result;
std::vector<uint32_t> usedDetids;
// now loop on recHits to find the right detId plus the track local angle
std::vector<std::pair<std::pair<DetId, LocalPoint>, float> > hitangle;
if (!cosmic_) {
// use trajectories in event.
// we have first to find the right trajectory for the considered track.
for (std::vector<Trajectory>::const_iterator traj = trajVec.begin(); traj < trajVec.end(); ++traj) {
if (((traj->lastMeasurement().recHit()->geographicalId().rawId() ==
(*(tk->recHitsEnd() - 1))->geographicalId().rawId()) &&
(traj->lastMeasurement().recHit()->localPosition().x() == (*(tk->recHitsEnd() - 1))->localPosition().x())) ||
((traj->firstMeasurement().recHit()->geographicalId().rawId() ==
(*(tk->recHitsEnd() - 1))->geographicalId().rawId()) &&
(traj->firstMeasurement().recHit()->localPosition().x() == (*(tk->recHitsEnd() - 1))->localPosition().x()))) {
hitangle = anglefinder_->findtrackangle(*traj);
break;
}
}
} else {
edm::Handle<TrajectorySeedCollection> seedcoll;
// event_->getByLabel(seedLabel_,seedcoll);
event_->getByToken(seedcollToken_, seedcoll);
// use trajectories in event.
hitangle = anglefinder_->findtrackangle(trajVec);
}
LogDebug("DetId") << "number of hits for the track: " << hitangle.size();
std::vector<std::pair<std::pair<DetId, LocalPoint>, float> >::iterator iter;
// select the interesting DetIds, based on the ID and TLA
for (iter = hitangle.begin(); iter != hitangle.end(); iter++) {
// check the detId.
// if substructure was 0xff, then maskDetId and rootDetId == 0
// this implies all detids are accepted. (also if maskDetId=rootDetId=0 explicitely).
// That "unusual" mode of operation allows to analyze also Latency scans
LogDebug("DetId") << "check the detid: " << std::hex << (iter->first.first.rawId()) << " vs " << rootDetId
<< " with a mask of " << maskDetId << std::dec << std::endl;
if (((iter->first.first.rawId() & maskDetId) != rootDetId))
continue;
if (std::find(usedDetids.begin(), usedDetids.end(), iter->first.first.rawId()) != usedDetids.end())
continue;
// check the local angle (extended to the equivalent angle correction)
LogDebug("DetId") << "check the angle: " << fabs((iter->second));
if (1 - fabs(fabs(iter->second) - 1) < cos(maxAngle_ / 180. * TMath::Pi()))
continue;
// returns the detid + the time of flight to there
std::pair<uint32_t, std::pair<double, double> > el;
std::pair<double, double> subel;
el.first = iter->first.first.rawId();
// here, we compute the TOF.
// For cosmics, some track parameters are missing. Parameters are recomputed.
// for our calculation, the track momemtum at any point is enough:
// only used without B field or for the sign of Pz.
double trackParameters[5];
for (int i = 0; i < 5; i++)
trackParameters[i] = tk->parameters()[i];
if (cosmic_)
SiStripFineDelayTOF::trackParameters(*tk, trackParameters);
double hit[3];
const GeomDetUnit* det(tracker.idToDetUnit(iter->first.first));
Surface::GlobalPoint gp = det->surface().toGlobal(iter->first.second);
hit[0] = gp.x();
hit[1] = gp.y();
hit[2] = gp.z();
double phit[3];
phit[0] = tk->momentum().x();
phit[1] = tk->momentum().y();
phit[2] = tk->momentum().z();
subel.first = SiStripFineDelayTOF::timeOfFlight(cosmic_, field_, trackParameters, hit, phit, onDisk);
subel.second = iter->second;
el.second = subel;
// returns the detid + TOF
result.push_back(el);
usedDetids.push_back(el.first);
}
return result;
}
bool SiStripFineDelayHit::rechit(reco::Track* tk, uint32_t det_id) {
for (trackingRecHit_iterator it = tk->recHitsBegin(); it != tk->recHitsEnd(); it++)
if ((*it)->geographicalId().rawId() == det_id) {
return (*it)->isValid();
break;
}
return false;
}
// VI January 2012: FIXME
// do not understand what is going on here: each hit has a cluster: by definition will be the closest!
std::pair<const SiStripCluster*, double> SiStripFineDelayHit::closestCluster(
const TrackerGeometry& tracker,
const reco::Track* tk,
const uint32_t& det_id,
const edmNew::DetSetVector<SiStripCluster>& clusters,
const edm::DetSetVector<SiStripDigi>& hits) {
std::pair<const SiStripCluster*, double> result(nullptr, 0.);
double hitStrip = -1;
int nstrips = -1;
// localize the crossing point of the track on the module
for (trackingRecHit_iterator it = tk->recHitsBegin(); it != tk->recHitsEnd(); it++) {
LogDebug("closestCluster") << "(*it)->geographicalId().rawId() vs det_id" << (*it)->geographicalId().rawId() << " "
<< det_id;
//handle the mono rechits
if ((*it)->geographicalId().rawId() == det_id) {
if (!(*it)->isValid())
continue;
LogDebug("closestCluster") << " using the single mono hit";
LocalPoint lp = (*it)->localPosition();
const GeomDetUnit* gdu = static_cast<const GeomDetUnit*>(tracker.idToDet((*it)->geographicalId()));
MeasurementPoint p = gdu->topology().measurementPosition(lp);
hitStrip = p.x();
nstrips = (dynamic_cast<const StripTopology*>(&(gdu->topology())))->nstrips();
break;
}
/* FIXME: local position is not there anymore...
//handle stereo part of matched hits
//one could try to cast to SiStripMatchedRecHit2D but it is faster to look at the detid
else if((det_id - (*it)->geographicalId().rawId())==1) {
const SiStripMatchedRecHit2D* hit2D = dynamic_cast<const SiStripMatchedRecHit2D*>(&(**it));
if(!hit2D) continue; // this is a security that should never trigger
const SiStripRecHit2D* stereo = hit2D->stereoHit();
if(!stereo) continue; // this is a security that should never trigger
if(!stereo->isValid()) continue;
LogDebug("closestCluster") << " using the stereo hit";
LocalPoint lp = stereo->localPosition();
const GeomDetUnit* gdu = static_cast<const GeomDetUnit*>(tracker.idToDet(stereo->geographicalId()));
MeasurementPoint p = gdu->topology().measurementPosition(lp);
hitStrip = p.x();
nstrips = (dynamic_cast<const StripTopology*>(&(gdu->topology())))->nstrips();
break;
}
//handle mono part of matched hits
//one could try to cast to SiStripMatchedRecHit2D but it is faster to look at the detid
else if((det_id - (*it)->geographicalId().rawId())==2) {
const SiStripMatchedRecHit2D* hit2D = dynamic_cast<const SiStripMatchedRecHit2D*>(&(**it));
if(!hit2D) continue; // this is a security that should never trigger
const SiStripRecHit2D* mono = hit2D->monoHit();
if(!mono) continue; // this is a security that should never trigger
if(!mono->isValid()) continue;
LogDebug("closestCluster") << " using the mono hit";
LocalPoint lp = mono->localPosition();
const GeomDetUnit* gdu = static_cast<const GeomDetUnit*>(tracker.idToDet(mono->geographicalId()));
MeasurementPoint p = gdu->topology().measurementPosition(lp);
hitStrip = p.x();
nstrips = (dynamic_cast<const StripTopology*>(&(gdu->topology())))->nstrips();
break;
}
*/
}
LogDebug("closestCluster") << " hit strip = " << hitStrip;
if (hitStrip < 0)
return result;
if (homeMadeClusters_) {
// take the list of digis on the module
for (edm::DetSetVector<SiStripDigi>::const_iterator DSViter = hits.begin(); DSViter != hits.end(); DSViter++) {
if (DSViter->id == det_id) {
// loop from hitstrip-n to hitstrip+n (explorationWindow_) and select the highest strip
int minStrip = int(round(hitStrip)) - explorationWindow_;
minStrip = minStrip < 0 ? 0 : minStrip;
int maxStrip = int(round(hitStrip)) + explorationWindow_ + 1;
maxStrip = maxStrip >= nstrips ? nstrips - 1 : maxStrip;
edm::DetSet<SiStripDigi>::const_iterator rangeStart = DSViter->end();
edm::DetSet<SiStripDigi>::const_iterator rangeStop = DSViter->end();
for (edm::DetSet<SiStripDigi>::const_iterator digiIt = DSViter->begin(); digiIt != DSViter->end(); ++digiIt) {
if (digiIt->strip() >= minStrip && rangeStart == DSViter->end())
rangeStart = digiIt;
if (digiIt->strip() <= maxStrip)
rangeStop = digiIt;
}
if (rangeStart != DSViter->end()) {
if (rangeStop != DSViter->end())
++rangeStop;
// build a fake cluster
LogDebug("closestCluster") << "build a fake cluster ";
SiStripCluster* newCluster =
new SiStripCluster(SiStripCluster::SiStripDigiRange(rangeStart, rangeStop)); // /!\ ownership transfered
result.first = newCluster;
result.second = fabs(newCluster->barycenter() - hitStrip);
}
break;
}
}
} else {
// loop on the detsetvector<cluster> to find the right one
for (edmNew::DetSetVector<SiStripCluster>::const_iterator DSViter = clusters.begin(); DSViter != clusters.end();
DSViter++)
if (DSViter->id() == det_id) {
LogDebug("closestCluster") << " detset with the right detid. ";
edmNew::DetSet<SiStripCluster>::const_iterator begin = DSViter->begin();
edmNew::DetSet<SiStripCluster>::const_iterator end = DSViter->end();
//find the cluster close to the hitStrip
result.second = 1000.;
for (edmNew::DetSet<SiStripCluster>::const_iterator iter = begin; iter != end; ++iter) {
double dist = fabs(iter->barycenter() - hitStrip);
if (dist < result.second) {
result.second = dist;
result.first = &(*iter);
}
}
break;
}
}
return result;
}
// ------------ method called to produce the data ------------
void SiStripFineDelayHit::produce(edm::Event& iEvent, const edm::EventSetup& iSetup) {
using namespace edm;
// Retrieve commissioning information from "event summary"
edm::Handle<SiStripEventSummary> runsummary;
// iEvent.getByLabel( inputModuleLabel_, runsummary );
iEvent.getByToken(inputModuleToken_, runsummary);
if (runsummary->runType() == sistrip::APV_LATENCY)
mode_ = 2; // LatencyScan
else if (runsummary->runType() == sistrip::FINE_DELAY)
mode_ = 1; // DelayScan
else {
mode_ = 0; //unknown
return;
}
if (noTracking_) {
produceNoTracking(iEvent, iSetup);
return;
}
event_ = &iEvent;
// container for the selected hits
std::vector<edm::DetSet<SiStripRawDigi> > output;
output.reserve(100);
// access the tracks
edm::Handle<reco::TrackCollection> trackCollection;
// iEvent.getByLabel(trackLabel_,trackCollection);
iEvent.getByToken(trackCollectionToken_, trackCollection);
const reco::TrackCollection* tracks = trackCollection.product();
const auto& tracker = iSetup.getData(tkGeomToken_);
if (!tracks->empty()) {
anglefinder_->init(iEvent, iSetup);
LogDebug("produce") << "Found " << tracks->size() << " tracks.";
// look at the hits if one needs them
edm::Handle<edm::DetSetVector<SiStripDigi> > hits;
const edm::DetSetVector<SiStripDigi>* hitSet = nullptr;
if (homeMadeClusters_) {
// iEvent.getByLabel(digiLabel_,hits);
iEvent.getByToken(digiToken_, hits);
hitSet = hits.product();
}
// look at the clusters
edm::Handle<edmNew::DetSetVector<SiStripCluster> > clusters;
// iEvent.getByLabel(clusterLabel_, clusters);
iEvent.getByToken(clustersToken_, clusters);
const edmNew::DetSetVector<SiStripCluster>* clusterSet = clusters.product();
// look at the trajectories if they are in the event
std::vector<Trajectory> trajVec;
edm::Handle<std::vector<Trajectory> > TrajectoryCollection;
// iEvent.getByLabel(trackLabel_,TrajectoryCollection);
iEvent.getByToken(trackToken_, TrajectoryCollection);
trajVec = *(TrajectoryCollection.product());
// Get TrackerTopology
const auto tTopo = &iSetup.getData(tTopoToken_);
// loop on tracks
for (reco::TrackCollection::const_iterator itrack = tracks->begin(); itrack < tracks->end(); itrack++) {
// first check the track Pt
if ((itrack->px() * itrack->px() + itrack->py() * itrack->py() + itrack->pz() * itrack->pz()) < minTrackP2_)
continue;
// check that we have something in the layer we are interested in
std::vector<std::pair<uint32_t, std::pair<double, double> > > intersections;
if (mode_ == 1) {
// Retrieve and decode commissioning information from "event summary"
edm::Handle<SiStripEventSummary> summary;
// iEvent.getByLabel( inputModuleLabel_, summary );
iEvent.getByToken(inputModuleToken_, summary);
uint32_t layerCode = (const_cast<SiStripEventSummary*>(summary.product())->layerScanned()) >> 16;
StripSubdetector::SubDetector subdet = StripSubdetector::TIB;
if (((layerCode >> 6) & 0x3) == 0)
subdet = StripSubdetector::TIB;
else if (((layerCode >> 6) & 0x3) == 1)
subdet = StripSubdetector::TOB;
else if (((layerCode >> 6) & 0x3) == 2)
subdet = StripSubdetector::TID;
else if (((layerCode >> 6) & 0x3) == 3)
subdet = StripSubdetector::TEC;
int32_t layerIdx = (layerCode & 0xF) * (((layerCode >> 4) & 0x3) ? -1 : 1);
intersections = detId(tracker, tTopo, &(*itrack), trajVec, subdet, layerIdx);
} else {
// for latency scans, no layer is specified -> no cut on detid
intersections = detId(tracker, tTopo, &(*itrack), trajVec);
}
LogDebug("produce") << " Found " << intersections.size() << " interesting intersections." << std::endl;
for (std::vector<std::pair<uint32_t, std::pair<double, double> > >::iterator it = intersections.begin();
it < intersections.end();
it++) {
std::pair<const SiStripCluster*, double> candidateCluster =
closestCluster(tracker, &(*itrack), it->first, *clusterSet, *hitSet);
if (candidateCluster.first) {
LogDebug("produce") << " Found a cluster." << std::endl;
// cut on the distance
if (candidateCluster.second > maxClusterDistance_)
continue;
LogDebug("produce") << " The cluster is close enough." << std::endl;
// build the rawdigi corresponding to the leading strip and save it
// here, only the leading strip is retained. All other rawdigis in the module are set to 0.
const auto& amplitudes = candidateCluster.first->amplitudes();
uint8_t leadingCharge = 0;
uint8_t leadingStrip = candidateCluster.first->firstStrip();
uint8_t leadingPosition = 0;
for (auto amplit = amplitudes.begin(); amplit < amplitudes.end(); amplit++, leadingStrip++) {
if (leadingCharge < *amplit) {
leadingCharge = *amplit;
leadingPosition = leadingStrip;
}
}
// look for an existing detset
std::vector<edm::DetSet<SiStripRawDigi> >::iterator newdsit = output.begin();
for (; newdsit != output.end() && newdsit->detId() != connectionMap_[it->first]; ++newdsit) {
}
// if there is no detset yet, create it.
if (newdsit == output.end()) {
edm::DetSet<SiStripRawDigi> newds(connectionMap_[it->first]);
output.push_back(newds);
newdsit = output.end() - 1;
}
LogDebug("produce") << " New Hit... TOF:" << it->second.first << ", charge: " << int(leadingCharge)
<< " at " << int(leadingPosition) << "." << std::endl
<< "Angular correction: " << it->second.second << " giving a final value of "
<< int(leadingCharge * fabs(it->second.second))
<< " for fed key = " << connectionMap_[it->first] << " (detid=" << it->first << ")";
// apply corrections to the leading charge, but only if it has not saturated.
if (leadingCharge < 255) {
// correct the leading charge for the crossing angle
leadingCharge = uint8_t(leadingCharge * fabs(it->second.second));
// correct for module thickness for TEC and TOB
if ((((it->first >> 25) & 0x7f) == 0xd) ||
((((it->first >> 25) & 0x7f) == 0xe) && (((it->first >> 5) & 0x7) > 4)))
leadingCharge = uint8_t((leadingCharge * 0.64));
}
//code the time of flight in the digi
unsigned int tof = abs(int(round(it->second.first * 10)));
tof = tof > 255 ? 255 : tof;
SiStripRawDigi newSiStrip(leadingCharge + (tof << 8));
newdsit->push_back(newSiStrip);
LogDebug("produce") << "New edm::DetSet<SiStripRawDigi> added.";
}
if (homeMadeClusters_)
delete candidateCluster.first; // we are owner of home-made clusters
}
}
}
// add the selected hits to the event.
LogDebug("produce") << "Putting " << output.size() << " new hits in the event.";
std::unique_ptr<edm::DetSetVector<SiStripRawDigi> > formatedOutput(new edm::DetSetVector<SiStripRawDigi>(output));
iEvent.put(std::move(formatedOutput), "FineDelaySelection");
}
// Simple solution when tracking is not available/ not working
void SiStripFineDelayHit::produceNoTracking(edm::Event& iEvent, const edm::EventSetup& iSetup) {
event_ = &iEvent;
// Get TrackerTopology
const auto tTopo = &iSetup.getData(tTopoToken_);
// container for the selected hits
std::vector<edm::DetSet<SiStripRawDigi> > output;
output.reserve(100);
// Retrieve and decode commissioning information from "event summary"
edm::Handle<SiStripEventSummary> summary;
// iEvent.getByLabel( inputModuleLabel_, summary );
iEvent.getByToken(inputModuleToken_, summary);
uint32_t layerCode = (const_cast<SiStripEventSummary*>(summary.product())->layerScanned()) >> 16;
StripSubdetector::SubDetector subdet = StripSubdetector::TIB;
if (((layerCode >> 6) & 0x3) == 0)
subdet = StripSubdetector::TIB;
else if (((layerCode >> 6) & 0x3) == 1)
subdet = StripSubdetector::TOB;
else if (((layerCode >> 6) & 0x3) == 2)
subdet = StripSubdetector::TID;
else if (((layerCode >> 6) & 0x3) == 3)
subdet = StripSubdetector::TEC;
int32_t layerIdx = (layerCode & 0xF) * (((layerCode >> 4) & 0x3) ? -1 : 1);
DeviceMask mask = deviceMask(subdet, layerIdx, tTopo);
// look at the clusters
edm::Handle<edmNew::DetSetVector<SiStripCluster> > clusters;
// iEvent.getByLabel(clusterLabel_,clusters);
iEvent.getByToken(clustersToken_, clusters);
for (edmNew::DetSetVector<SiStripCluster>::const_iterator DSViter = clusters->begin(); DSViter != clusters->end();
DSViter++) {
// check that we are in the layer of interest
if (mode_ == 1 && ((DSViter->id() & mask.first) != mask.second))
continue;
// iterate over clusters
edmNew::DetSet<SiStripCluster>::const_iterator begin = DSViter->begin();
edmNew::DetSet<SiStripCluster>::const_iterator end = DSViter->end();
edm::DetSet<SiStripRawDigi> newds(connectionMap_[DSViter->id()]);
for (edmNew::DetSet<SiStripCluster>::const_iterator iter = begin; iter != end; ++iter) {
// build the rawdigi corresponding to the leading strip and save it
// here, only the leading strip is retained. All other rawdigis in the module are set to 0.
auto const& amplitudes = iter->amplitudes();
uint8_t leadingCharge = 0;
uint8_t leadingStrip = iter->firstStrip();
uint8_t leadingPosition = 0;
for (auto amplit = amplitudes.begin(); amplit < amplitudes.end(); amplit++, leadingStrip++) {
if (leadingCharge < *amplit) {
leadingCharge = *amplit;
leadingPosition = leadingStrip;
}
}
// apply some sanity cuts. This is needed since we don't use tracking to clean clusters
// 1.5< noise <8
// charge<250
// 50 > s/n > 10
const auto& noises = iSetup.getData(noiseToken_);
SiStripNoises::Range detNoiseRange = noises.getRange(DSViter->id());
float noise = noises.getNoise(leadingPosition, detNoiseRange);
if (noise < 1.5)
continue;
if (leadingCharge >= 250 || noise >= 8 || leadingCharge / noise > 50 || leadingCharge / noise < 10)
continue;
// apply some correction to the leading charge, but only if it has not saturated.
if (leadingCharge < 255) {
// correct for modulethickness for TEC and TOB
if ((((((DSViter->id()) >> 25) & 0x7f) == 0xd) || ((((DSViter->id()) >> 25) & 0x7f) == 0xe)) &&
((((DSViter->id()) >> 5) & 0x7) > 4))
leadingCharge = uint8_t((leadingCharge * 0.64));
}
//code the time of flight == 0 in the digi
SiStripRawDigi newSiStrip(leadingCharge);
newds.push_back(newSiStrip);
}
//store into the detsetvector
output.push_back(newds);
LogDebug("produce") << "New edm::DetSet<SiStripRawDigi> added with fedkey = " << std::hex << std::setfill('0')
<< std::setw(8) << connectionMap_[DSViter->id()] << std::dec;
}
// add the selected hits to the event.
LogDebug("produce") << "Putting " << output.size() << " new hits in the event.";
std::unique_ptr<edm::DetSetVector<SiStripRawDigi> > formatedOutput(new edm::DetSetVector<SiStripRawDigi>(output));
iEvent.put(std::move(formatedOutput), "FineDelaySelection");
}
// ------------ method called once each job just before starting event loop ------------
void SiStripFineDelayHit::beginRun(const edm::Run& run, const edm::EventSetup& iSetup) {
// Retrieve FED cabling object
const auto& cabling = iSetup.getData(fedCablingToken_);
auto feds = cabling.fedIds();
for (auto fedid = feds.begin(); fedid < feds.end(); ++fedid) {
auto connections = cabling.fedConnections(*fedid);
for (std::vector<FedChannelConnection>::const_iterator conn = connections.begin(); conn < connections.end();
++conn) {
/*
SiStripFedKey key(conn->fedId(),
SiStripFedKey::feUnit(conn->fedCh()),
SiStripFedKey::feChan(conn->fedCh()));
connectionMap_[conn->detId()] = key.key();
*/
// the key is computed using an alternate formula for performance reasons.
connectionMap_[conn->detId()] = ((conn->fedId() & sistrip::invalid_) << 16) | (conn->fedCh() & sistrip::invalid_);
}
}
}
|