1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
#include "DQM/SiStripCommissioningSources/interface/PedsFullNoiseTask.h"
#include "DataFormats/SiStripCommon/interface/SiStripConstants.h"
#include "DataFormats/SiStripCommon/interface/SiStripHistoTitle.h"
#include "DQM/SiStripCommon/interface/ExtractTObject.h"
#include "DQM/SiStripCommon/interface/UpdateTProfile.h"
#include "DQMServices/Core/interface/DQMStore.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
// -----------------------------------------------------------------------------
//
PedsFullNoiseTask::PedsFullNoiseTask(DQMStore* dqm, const FedChannelConnection& conn, const edm::ParameterSet& pset)
: CommissioningTask(dqm, conn, "PedsFullNoiseTask"), nstrips_(256) {
LogTrace(sistrip::mlDqmSource_) << "[PedsFullNoiseTask::" << __func__ << "]"
<< " Constructing object...";
edm::ParameterSet params = pset.getParameter<edm::ParameterSet>("PedsFullNoiseParameters");
nskip_ = params.getParameter<int>("NrEvToSkipAtStart");
skipped_ = false;
nevpeds_ = params.getParameter<int>("NrEvForPeds");
pedsdone_ = false;
nadcnoise_ = params.getParameter<int>("NrPosBinsNoiseHist");
fillnoiseprofile_ = params.getParameter<bool>("FillNoiseProfile");
useavgcm_ = params.getParameter<bool>("UseAverageCommonMode");
usefloatpeds_ = params.getParameter<bool>("UseFloatPedestals");
}
// -----------------------------------------------------------------------------
//
PedsFullNoiseTask::~PedsFullNoiseTask() {
LogTrace(sistrip::mlDqmSource_) << "[PedsFullNoiseTask::" << __func__ << "]"
<< " Destructing object...";
}
// -----------------------------------------------------------------------------
//
void PedsFullNoiseTask::book() {
LogTrace(sistrip::mlDqmSource_) << "[PedsFullNoiseTask::" << __func__ << "]";
// pedestal profile histo
pedhist_.isProfile_ = true;
pedhist_.explicitFill_ = false;
if (!pedhist_.explicitFill_) {
pedhist_.vNumOfEntries_.resize(nstrips_, 0);
pedhist_.vSumOfContents_.resize(nstrips_, 0);
pedhist_.vSumOfSquares_.resize(nstrips_, 0);
}
std::string titleped = SiStripHistoTitle(sistrip::EXPERT_HISTO,
sistrip::PEDS_FULL_NOISE,
sistrip::FED_KEY,
fedKey(),
sistrip::LLD_CHAN,
connection().lldChannel(),
sistrip::extrainfo::pedestals_)
.title();
pedhist_.histo(dqm()->bookProfile(titleped, titleped, nstrips_, -0.5, nstrips_ * 1. - 0.5, 1025, 0., 1025.));
// Noise profile
noiseprof_.isProfile_ = true;
noiseprof_.explicitFill_ = false;
if (!noiseprof_.explicitFill_) {
noiseprof_.vNumOfEntries_.resize(nstrips_, 0);
noiseprof_.vSumOfContents_.resize(nstrips_, 0);
noiseprof_.vSumOfSquares_.resize(nstrips_, 0);
}
std::string titlenoise = SiStripHistoTitle(sistrip::EXPERT_HISTO,
sistrip::PEDS_FULL_NOISE,
sistrip::FED_KEY,
fedKey(),
sistrip::LLD_CHAN,
connection().lldChannel(),
sistrip::extrainfo::noiseProfile_)
.title();
noiseprof_.histo(dqm()->bookProfile(titlenoise, titlenoise, nstrips_, -0.5, nstrips_ * 1. - 0.5, 1025, 0., 1025.));
// noise 2D compact histo
noisehist_.explicitFill_ = false;
if (!noisehist_.explicitFill_) {
noisehist_.vNumOfEntries_.resize((nstrips_ + 2) * 2 * (nadcnoise_ + 2), 0);
}
std::string titlenoise2d = SiStripHistoTitle(sistrip::EXPERT_HISTO,
sistrip::PEDS_FULL_NOISE,
sistrip::FED_KEY,
fedKey(),
sistrip::LLD_CHAN,
connection().lldChannel(),
sistrip::extrainfo::noise2D_)
.title();
noisehist_.histo(dqm()->book2S(
titlenoise2d, titlenoise2d, 2 * nadcnoise_, -nadcnoise_, nadcnoise_, nstrips_, -0.5, nstrips_ * 1. - 0.5));
hist2d_ = (TH2S*)noisehist_.histo()->getTH2S();
}
// -----------------------------------------------------------------------------
//
void PedsFullNoiseTask::fill(const SiStripEventSummary& summary, const edm::DetSet<SiStripRawDigi>& digis) {
// Check number of digis
uint16_t nbins = digis.data.size();
if (nbins != nstrips_) {
edm::LogWarning(sistrip::mlDqmSource_) << "[PedsFullNoiseTask::" << __func__ << "]"
<< " " << nstrips_ << " digis expected, but got " << nbins << ". Skipping.";
return;
}
// get the event number of the first event, not necessarily 1 (parallel processing on FUs)
static int32_t firstev = summary.event();
// skipping events
if (!skipped_) {
if (static_cast<int32_t>(summary.event()) - firstev < nskip_) {
return;
} else { // when all events are skipped
skipped_ = true;
if (nskip_ > 0)
LogTrace(sistrip::mlDqmSource_) << "[PedsFullNoiseTask::" << __func__ << "]"
<< " Done skipping events. Now starting pedestals.";
}
}
// determine pedestals - decoupled from noise determination
if (!pedsdone_) {
if (static_cast<int32_t>(summary.event()) - firstev < nskip_ + nevpeds_) {
// estimate the pedestals
for (uint16_t istrip = 0; istrip < nstrips_; ++istrip) {
updateHistoSet(pedhist_, istrip, digis.data[istrip].adc());
}
return;
} else { // when pedestals are done
pedsdone_ = true;
// cache the pedestal values for use in the 2D noise estimation
peds_.clear();
pedsfl_.clear();
for (uint16_t iapv = 0; iapv < 2; ++iapv) {
for (uint16_t ibin = 0; ibin < 128; ++ibin) {
uint16_t istrip = (iapv * 128) + ibin;
if (usefloatpeds_) {
pedsfl_.push_back(1. * pedhist_.vSumOfContents_.at(istrip) / pedhist_.vNumOfEntries_.at(istrip));
} else {
peds_.push_back(
static_cast<int16_t>(1. * pedhist_.vSumOfContents_.at(istrip) / pedhist_.vNumOfEntries_.at(istrip)));
}
}
}
LogTrace(sistrip::mlDqmSource_) << "[PedsFullNoiseTask::" << __func__ << "]"
<< " Rough pedestals done. Now starting noise measurements.";
}
}
// fill (or not) the old-style niose profile
if (fillnoiseprofile_) {
// Calc common mode for both APVs
std::vector<int32_t> cm;
cm.resize(2, 0);
std::vector<uint16_t> adc;
for (uint16_t iapv = 0; iapv < 2; iapv++) {
adc.clear();
adc.reserve(128);
for (uint16_t ibin = 0; ibin < 128; ibin++) {
if ((iapv * 128) + ibin < nbins) {
adc.push_back(digis.data.at((iapv * 128) + ibin).adc());
}
}
sort(adc.begin(), adc.end());
// take median as common mode
uint16_t index = adc.size() % 2 ? adc.size() / 2 : adc.size() / 2 - 1;
cm[iapv] = static_cast<int16_t>(adc[index]);
}
// 1D noise profile - see also further processing in the update() method
for (uint16_t istrip = 0; istrip < nstrips_; ++istrip) {
// calculate the noise in the old way, by subtracting the common mode, but without pedestal subtraction
int16_t noiseval = static_cast<int16_t>(digis.data.at(istrip).adc()) - cm[istrip / 128];
updateHistoSet(noiseprof_, istrip, noiseval);
}
}
// 2D noise histogram
std::vector<int16_t> noisevals, noisevalssorted;
std::vector<float> noisevalsfl, noisevalssortedfl;
for (uint16_t iapv = 0; iapv < 2; ++iapv) {
float totadc = 0;
noisevals.clear();
noisevalsfl.clear();
noisevalssorted.clear();
noisevalssortedfl.clear();
for (uint16_t ibin = 0; ibin < 128; ++ibin) {
uint16_t istrip = (iapv * 128) + ibin;
// calculate the noise after subtracting the pedestal
if (usefloatpeds_) { // if float pedestals -> before FED processing
noisevalsfl.push_back(static_cast<float>(digis.data.at(istrip).adc()) - pedsfl_.at(istrip));
// now we still have a possible constant shift of the adc values with respect to 0, so we prepare to calculate the median of this shift
if (useavgcm_) { // if average CM -> before FED processing
totadc += noisevalsfl[ibin];
} else { // if median CM -> after FED processing
noisevalssortedfl.push_back(noisevalsfl[ibin]);
}
} else { // if integer pedestals -> after FED processing
noisevals.push_back(static_cast<int16_t>(digis.data.at(istrip).adc()) - peds_.at(istrip));
// now we still have a possible constant shift of the adc values with respect to 0, so we prepare to calculate the median of this shift
if (useavgcm_) { // if average CM -> before FED processing
totadc += noisevals[ibin];
} else { // if median CM -> after FED processing
noisevalssorted.push_back(noisevals[ibin]);
}
}
}
// calculate the common mode shift to apply
float cmshift = 0;
if (useavgcm_) { // if average CM -> before FED processing
if (usefloatpeds_) { // if float pedestals -> before FED processing
cmshift = totadc / 128;
} else { // if integer pedestals -> after FED processing
cmshift = static_cast<int16_t>(totadc / 128);
}
} else { // if median CM -> after FED processing
if (usefloatpeds_) { // if float pedestals -> before FED processing
// get the median common mode
sort(noisevalssortedfl.begin(), noisevalssortedfl.end());
uint16_t index = noisevalssortedfl.size() % 2 ? noisevalssortedfl.size() / 2 : noisevalssortedfl.size() / 2 - 1;
cmshift = noisevalssortedfl[index];
} else { // if integer pedestals -> after FED processing
// get the median common mode
sort(noisevalssorted.begin(), noisevalssorted.end());
uint16_t index = noisevalssorted.size() % 2 ? noisevalssorted.size() / 2 : noisevalssorted.size() / 2 - 1;
cmshift = noisevalssorted[index];
}
}
// now loop again to calculate the CM+pedestal subtracted noise values
for (uint16_t ibin = 0; ibin < 128; ++ibin) {
uint16_t istrip = (iapv * 128) + ibin;
// subtract the remaining common mode after subtraction of the rough pedestals
float noiseval = (usefloatpeds_ ? noisevalsfl[ibin] : noisevals[ibin]) - cmshift;
// retrieve the linear binnr through the histogram
uint32_t binnr = hist2d_->GetBin(static_cast<int>(noiseval + nadcnoise_), istrip + 1);
// store the noise value in the 2D histo
updateHistoSet(noisehist_, binnr); // no value, so weight 1
}
}
}
// -----------------------------------------------------------------------------
//
void PedsFullNoiseTask::update() {
// pedestals
updateHistoSet(pedhist_);
if (fillnoiseprofile_) {
// noise profile (does not use HistoSet directly, as want to plot noise as "contents", not "error")
TProfile* histo = ExtractTObject<TProfile>().extract(noiseprof_.histo());
for (uint16_t ii = 0; ii < noiseprof_.vNumOfEntries_.size(); ++ii) {
float mean = 0.;
float spread = 0.;
float entries = noiseprof_.vNumOfEntries_[ii];
if (entries > 0.) {
mean = noiseprof_.vSumOfContents_[ii] / entries;
spread = sqrt(noiseprof_.vSumOfSquares_[ii] / entries -
mean * mean); // nice way to calculate std dev: Sum (x-<x>)^2 / N
}
float error = spread / sqrt(entries); // uncertainty on std.dev. when no uncertainty on mean
UpdateTProfile::setBinContent(histo, ii + 1, entries, spread, error);
}
}
// noise 2D histo
updateHistoSet(noisehist_);
}
// -----------------------------------------------------------------------------
|