Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
#!/usr/bin/env python3

import sys
import math
from ROOT import gROOT, TClass, TFile
from copy import deepcopy
from scipy import signal

gROOT.SetBatch()        # don't pop up canvases

class InefficientDeadROCs:
  ############################################################################

  def __TraverseDirTree(self, dir):

    for obj in dir.GetListOfKeys():
      if not obj.IsFolder():
        if obj.ReadObjectAny(TClass.GetClass("TH2")):
          th1 = deepcopy(obj.ReadObj())
          name = th1.GetName()
          if name.startswith(self.lookForStr): #take only module lvl plots
            # print(''.join([dir.GetPath(), '/', name]))
            newName = name.split(self.lookForStr)[1]
            th1.SetName(newName)

            # used to sort outputs by disk/layer
            layer = 0
            # print(newName)
            if newName.startswith("B"):
              layer = "B" + ((newName.split("_LYR"))[1])[0]
            else:
              layer = ((newName.split("_D"))[1])[0]
              if newName.startswith("FPix_Bm"):
                layer = "-" + layer
              layer = "F" + layer

            if layer in self.dicOfModuleHistograms:
              self.dicOfModuleHistograms[layer].append(th1)
            else:
              self.dicOfModuleHistograms.update({layer : [th1]})
      else:
        self.__TraverseDirTree(obj.ReadObj())

  def __init__(self, inputDQMName, outputFileName, noiseOutputFileName, dirs):

    self.inputFileName = inputDQMName
    self.outputFileName = outputFileName
    self.noiseOutputFileName = noiseOutputFileName
    self.dirs = dirs

    self.lookForStr = "digi_occupancy_per_col_per_row_"

    self.rocMaxCol = 52
    self.rocMaxRow = 80
    self.rocsInRow = 8
    self.rocsInCol = 2

    self.inputFile = TFile(self.inputFileName)
    self.dicOfModuleHistograms = {}

    ### THRESHOLDS SECTION
    self.pixelNoisynessTh = 6
    self.rocOccupancyTh = 200

    self.barrelNoisyColumnTh = 1.35
    self.barrelNoisyColumnTh2 = 4.5
    self.endcapNoisyColumnTh = 1.5

    self.barrelInefficientDColTh = 8#2.5
    self.endcapInefficientDColTh = 30#8

    ### ###################

    if self.inputFile.IsOpen():
      print("%s opened successfully!" % (self.inputFileName))
      #Get all neeeded histograms
      for dir in self.dirs:
        self.__TraverseDirTree(self.inputFile.Get(dir))
      print("Histograms to read: %d" % (len(self.dicOfModuleHistograms)))

      self.detDict = {}

    else:
      print("Unable to open file %s" % (self.inputFileName))

  def __lmsExp(self, data, xMin, xMax):
    meanOfX = (xMax + xMin) * 0.5
    meanOfY = sum( [math.log(data[i]) for i in range(len(data))] ) / len(data)

    D = 0
    for i in range(xMin, xMax + 1):
      D = D + (i - meanOfX)**2
      # print(D)

    a = 0
    for i in range(len(data)):
      a = a + math.log(data[i]) * (xMin + i - meanOfX)
    a = a/D

    lnb = meanOfY - a * meanOfX

    return a, math.exp(lnb)

  def __lmsLin(self, data, xMin, xMax):
    meanOfX = (xMax + xMin) * 0.5
    meanOfY = sum(data) / len(data)

    D = 0
    for i in range(xMin, xMax + 1):
      D = D + (i - meanOfX)**2

    a = 0
    for i in range(len(data)):
      a = a + data[i] * (xMin + i - meanOfX)
    a = a/D

    b = meanOfY - a * meanOfX

    return a, b, D

  def __customMedianFilter(self, array, radius = 2):
    # contrary to scipy implementation it provides adaptive kernel size instead of copying data on boundaries
    filtered = [0 for i in range(len(array))]
    currArray = []
    for i in range(len(array)):
      if i - radius < 0:
        currArray = array[0 : i + radius + 1]
      elif i + radius + 1 >= len(array):
        currArray = array[i - radius : ]

      currArray.sort()
      filtered[i] = currArray[len(currArray) // 2]

    return filtered

  def __getROCData(self, hist, startPixel, endPixel, row, repeatFilter = 3, filterKernelSize = 5):
    pixelArr = []
    columnsWithSuspiciouslyNoisyPixels = []

    for x in range(startPixel, endPixel):

      columnPixels = [hist.GetBinContent(x, y + 1) for y in range(row * self.rocMaxRow, (row + 1) * self.rocMaxRow)]
      columnSum = sum(columnPixels)

      columnMean = columnSum / len(columnPixels)
      for i in range(len(columnPixels)):
        if columnPixels[i] > self.pixelNoisynessTh * columnMean:
          # col = (startPixel % self.rocMaxCol) + 1

          columnsWithSuspiciouslyNoisyPixels.append(x)

          # print("WARNING:\t %s : %dx%d:%d may contain NOISY PIXELS instead of NOISY COLUMNS" % (hist.GetName(), col, row + 1, startPixel + i))
          break

      pixelArr.append(columnSum)

    if len(pixelArr) == 0:
      return None, None, None                                             # ROC down

    medFiltRes, sciPyMedFiltRes = deepcopy(pixelArr), deepcopy(pixelArr)
    for i in range(repeatFilter):
      sciPyMedFiltRes = signal.medfilt(sciPyMedFiltRes, filterKernelSize) # 5 is obligatory to filter doublets!!!
      medFiltRes = self.__customMedianFilter(medFiltRes, filterKernelSize // 2)

    return pixelArr, medFiltRes, columnsWithSuspiciouslyNoisyPixels, sciPyMedFiltRes

  def __getPixelArrWithRemovedDrops(self, pixelArr, medFiltRes):
    return [ (pixelArr[i] if pixelArr[i] > medFiltRes[i] else medFiltRes[i]) if 0 < i < len(pixelArr) - 1 else min(medFiltRes) for i in range(len(pixelArr))]

  def __normalizeArray(self, pixelArr):
    c_min, c_max = min(pixelArr), max(pixelArr)
    if c_min != c_max:
      c_diff_inv = 1.0 / (c_max - c_min)
      return [ (pixelArr[i] - c_min) * c_diff_inv for i in range(len(pixelArr))]
    return [0 for i in range(len(pixelArr))]

  def __setNormalizedArrayZeroInThePoint(self, pixelArr, pt):
    c_diff_inv = 1.0 / (1.0 - pt)

    return [ (pixelArr[i] - pt) * c_diff_inv for i in range(len(pixelArr))]

  def __determineBarrelNoise(self, noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, maxMed, val, pos, rocCol, rocRow):
    noisyROC = False;
    if meanOfPixels < self.rocOccupancyTh:
      #print("Very low mean occupancy: %f in %s in (col, row) (%d, %d)...\tSkipping noisy ROC calculation" % (meanOfPixels, histName, rocCol, rocRow) )
      noisyROC = True
    else:
      th = self.barrelNoisyColumnTh * maxMed
      if val > th:
        if pos not in columnsWithSuspiciouslyNoisyPixels:
          rocNum, xCoordInROC = self.__convertCoordinatesFromHistToROCSpace(histName, pos, rocRow)
          noiseFile.write("%s\t(x, row)->[rocNum, xRoc]\t(%d, %d)->[%d, %d];\t{VAL, TH}\t{%f, %f}\n" % (histName, pos, rocRow+1, rocNum, xCoordInROC, val, th))

          return 1, noisyROC
        # else:
          # print("WARNING: rejecting %s (x, row) (%d, %d) as being affected by a few noisy pixel(s)" % (histName, pos, rocRow+1))

    return 0, noisyROC

  def __determineBarrelNoise2(self, noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, normMeanOfPixels, normVal, pos, rocCol, rocRow):
    noisyROC = False;
    if meanOfPixels < self.rocOccupancyTh:
      #print("Very low mean occupancy: %f in %s in (col, row) (%d, %d)...\tSkipping noisy ROC calculation" % (meanOfPixels, histName, rocCol, rocRow) )
      noisyROC = True
    else:
      th = self.barrelNoisyColumnTh2 * normMeanOfPixels
      if normVal > th:
        if pos not in columnsWithSuspiciouslyNoisyPixels:
          rocNum, xCoordInROC = self.__convertCoordinatesFromHistToROCSpace(histName, pos, rocRow)
          noiseFile.write("%s\t(x, row)->[rocNum, xRoc]\t(%d, %d)->[%d, %d];\t{NORMVAL, TH}\t{%f, %f}\n" % (histName, pos, rocRow+1, rocNum, xCoordInROC, normVal, th))

          return 1, noisyROC
        # else:
          # print("WARNING: rejecting %s (x, row) (%d, %d) as being affected by a few noisy pixel(s)" % (histName, pos, rocRow+1))

    return 0, noisyROC

  def __determineEndcapNoise(self, noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, linVal, val, pos, rocCol, rocRow):
    noisyROC = False;
    if meanOfPixels < self.rocOccupancyTh:
      # print("Very low mean occupancy: %f in %s in (col, row) (%d, %d)...\tSkipping noisy ROC calculation" % (meanOfPixels, histName, rocCol, rocRow) )
      noisyROC = True

    else:
      th = self.endcapNoisyColumnTh * linVal
      if val > th:
        if pos not in columnsWithSuspiciouslyNoisyPixels:
          rocNum, xCoordInROC = self.__convertCoordinatesFromHistToROCSpace(histName, pos, rocRow)
          noiseFile.write("%s\t(x, row)->[rocNum, xRoc]\t(%d, %d)->[%d, %d];\t{VAL, TH}\t{%f, %f}\n" % (histName, pos, rocRow+1, rocNum, xCoordInROC, val, th))

          return 1, noisyROC
        # else:
          # print("WARNING: rejecting %s (x, row) (%d, %d) as being affected by a few noisy pixel(s)" % (histName, pos, rocRow+1))

    return 0, noisyROC

  def __convertCoordinatesFromHistToROCSpace(self, histName, histXpos, histRow):
    tempXROC = (histXpos / self.rocMaxCol) # 0,...,7
    tempYROC = histRow

    tempXCoordInROC = histXpos % self.rocMaxCol

    realXROC, realYROC = tempXROC, tempYROC
    xCoordInROC = tempXCoordInROC

    rocNum = 0

    if histName.find("BPix_Bp") != -1: #zero ROC is in top left corner
      realYROC = 1 - tempYROC
      if realYROC == 1:
        rocNum = 15 - realXROC
        xCoordInROC = self.rocMaxCol - 1 - xCoordInROC
      else:
        rocNum = realXROC
    else: # zero ROC is in bottom right corner
      realXROC = 7 - tempXROC
      if realYROC == 1:
        rocNum = 15 - realXROC
      else:
        rocNum = realXROC
        xCoordInROC = self.rocMaxCol - 1 - xCoordInROC

    return rocNum, xCoordInROC


  def __determineBarrelDColInefficiencyAndNoise(self, medFiltRes, histName, pixelArr, pixelArrWithoutDrops, startPixel, rocCol, rocRow, outputFile, columnsWithSuspiciouslyNoisyPixels, noiseFile):
    meanOfPixels = sum(medFiltRes) / len(medFiltRes)
    maxMed = max(medFiltRes)
    minMed = min(medFiltRes)

    normMeanOfPixels = sum(pixelArrWithoutDrops) / len(pixelArrWithoutDrops)
    # print( meanOfPixels, maxMed, minMed )

    doubleDeadCols = 0
    noisyColsNum = 0
    noisyROC = 0

    # for x in range(startPixel, endPixel, 1):
    for i in range(1, len(pixelArr) - 2):
      # print(i , i + 1)
      bin1valDiff = minMed - pixelArr[i + 0]#hist.GetBinContent(x+0)
      bin2valDiff = minMed - pixelArr[i + 1]
      # WE ONLY WANT A SET OF TWO COLUMNS SO ADJACENT COLUMNS HAVE TO BE NORMAL
      bin0valDiff = minMed - pixelArr[i - 1]
      bin3valDiff = minMed - pixelArr[i + 2]

      # currentDoubleBinThreshold = minMed / math.sqrt(meanOfPixels) * self.barrelInefficientDColTh # error in bin entry grows as sqrt(N)
      currentDoubleBinThreshold = math.sqrt(meanOfPixels) * self.barrelInefficientDColTh # error in bin entry grows as sqrt(N)

      if bin1valDiff > currentDoubleBinThreshold and bin2valDiff > currentDoubleBinThreshold and not bin3valDiff > currentDoubleBinThreshold and not bin0valDiff > currentDoubleBinThreshold:

        doubleColInRoc = ((i + startPixel) % (self.rocMaxCol)) // 2 + 1
        doubleDeadCols = doubleDeadCols + 1

        # outputFile.write("%s,\tX: %d-%d\tROC COLUMN: %d\tROC ROW: %d\tDOUBLE COL IN ROC: %d\tTH: %f\tMIN IN ROC: %f\tBINVAL: %f\n" % (histName, startPixel + (i + 0), startPixel + (i + 1), rocCol, rocRow, doubleColInRoc, currentDoubleBinThreshold, minMed, pixelArr[i]))
        rocNum, xCoordInROC = self.__convertCoordinatesFromHistToROCSpace(histName, startPixel + i, rocRow)
        outputFile.write("%s\t(x, row)->[rocNum, doubleXPixelColInROC]\t(%d, %d)->[%d, %d];\t{MIN - VAL, TH}\t{%f, %f}\n" % (histName, startPixel + i, rocRow + 1, rocNum, xCoordInROC / 2, bin1valDiff, currentDoubleBinThreshold))

      # HANDLE NOISY PIXELS
      if noisyROC == True:  #don't go inside if noisyness was determined already
        continue

      # res = self.__determineBarrelNoise(noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, maxMed, pixelArr[i], startPixel + i, rocCol, rocRow)
      # noisyColsNum, noisyROC = noisyColsNum + res[0], res[1]
      # if i == len(pixelArr) - 3: #  CHECK NOISYNESS IN THE RIGHTMOST INNER COL
        # res = self.__determineBarrelNoise(noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, maxMed, pixelArr[i + 1], startPixel + i + 1, rocCol, rocRow)
        # noisyColsNum, noisyROC = noisyColsNum + res[0], res[1]

      # NORMALIZED MEAN NOISE DETERMINATION METHOD
      res = self.__determineBarrelNoise2(noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, normMeanOfPixels, pixelArrWithoutDrops[i], startPixel + i, rocCol, rocRow)
      noisyColsNum, noisyROC = noisyColsNum + res[0], res[1]
      if i == len(pixelArr) - 3: #  CHECK NOISYNESS IN THE RIGHTMOST INNER COL
        res = self.__determineBarrelNoise2(noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, normMeanOfPixels, pixelArrWithoutDrops[i + 1], startPixel + i + 1, rocCol, rocRow)
        noisyColsNum, noisyROC = noisyColsNum + res[0], res[1]



    return doubleDeadCols, noisyColsNum

  def __determineEndcapDColInefficiencyAndNoise(self, medFiltRes, histName, pixelArr, startPixel, rocCol, rocRow, outputFile, columnsWithSuspiciouslyNoisyPixels, noiseFile):
    doubleDeadCols = 0
    noisyColsNum = 0
    noisyROC = 0

    useLin = True
    # <D> might be used for high noise ROC recognition
    a, b, D = self.__lmsLin(medFiltRes, startPixel, len(medFiltRes) + startPixel)

    meanOfPixels = sum(medFiltRes) / len(medFiltRes)

    # for x in range(startPixel, endPixel, 1):
    for i in range(1, len(pixelArr) - 2):

      if useLin == True:
        linVal1 = a * (i + startPixel + 0) + b
        linVal2 = a * (i + startPixel + 1) + b

        linVal0 = a * (i + startPixel - 1) + b
        linVal3 = a * (i + startPixel + 2) + b
      else:
        linVal1 = b * math.exp(a * (i + startPixel + 0))
        linVal2 = b * math.exp(a * (i + startPixel + 1))

        linVal0 = b * math.exp(a * (i + startPixel - 1))
        linVal3 = b * math.exp(a * (i + startPixel + 2))

      bin1valDiff = linVal1 - pixelArr[i + 0]
      bin2valDiff = linVal2 - pixelArr[i + 1]
      # WE ONLY WANT A SET OF TWO COLUMNS SO ADJACENT COLUMNS HAVE TO BE NORMAL
      bin0valDiff = linVal0 - pixelArr[i - 1]
      bin3valDiff = linVal3 - pixelArr[i + 2]

      try:
        currentDoubleBinThreshold = math.sqrt((linVal1 + linVal2) * 0.5) * self.endcapInefficientDColTh
      except:
        # print(a, b, startPixel, i, linVal1, linVal2)
        continue

      if bin1valDiff > currentDoubleBinThreshold and bin2valDiff > currentDoubleBinThreshold and not bin3valDiff > currentDoubleBinThreshold and not bin0valDiff > currentDoubleBinThreshold:

        doubleColInRoc = ((i + startPixel) % (self.rocMaxCol)) // 2 + 1
        doubleDeadCols = doubleDeadCols + 1

        # outputFile.write("%s,\tX: %d-%d\tROC COLUMN: %d\tROC ROW: %d\tDOUBLE COL IN ROC: %d\tTH: %f\tLINVAL: %f\tBINVAL: %f\n" % (histName, startPixel + (i + 0), startPixel + (i + 1), rocCol, rocRow, doubleColInRoc, currentDoubleBinThreshold, linVal1, pixelArr[i]))
        rocNum, xCoordInROC = self.__convertCoordinatesFromHistToROCSpace(histName, startPixel + i, rocRow)
        outputFile.write("%s\t(x, row)->[rocNum, doubleXPixelColInROC]\t(%d, %d)->[%d, %d];\t{LIN(x) - VAL, TH}\t{%f, %f}\n" % (histName, startPixel + i, rocRow + 1, rocNum, xCoordInROC / 2, bin1valDiff, currentDoubleBinThreshold))


      # HANDLE NOISY PIXELS
      if noisyROC == True:  #don't go inside if noisyness was determined already
        continue

      res = self.__determineEndcapNoise(noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, linVal1, pixelArr[i], i + startPixel, rocCol, rocRow)
      noisyColsNum, noisyROC = noisyColsNum + res[0], res[1]
      if i == len(pixelArr) - 3: #  CHECK NOISYNESS IN THE RIGHTMOST INNER COL
        res = self.__determineEndcapNoise(noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, linVal2, pixelArr[i + 1], i + 1 + startPixel, rocCol, rocRow)
        noisyColsNum, noisyROC = noisyColsNum + res[0], res[1]

    return doubleDeadCols, noisyColsNum

  def ReadHistograms(self):
    doubleDeadCols, noisyColsNum = 0, 0

    with open(self.noiseOutputFileName, "w") as noiseFile:
      with open(self.outputFileName, "w") as outputFile:
        for layer in self.dicOfModuleHistograms:

          doubleDeadColsInLayer, noisyColsNumInLayer = 0, 0

          outputFile.write("-> " + layer + "\n\n")
          noiseFile.write("-> " + layer + "\n\n")

          for hist in self.dicOfModuleHistograms[layer]:
            for row in range(2):
              for rocNum in range(self.rocsInRow):
                startPixel = rocNum * self.rocMaxCol + 1
                endPixel = (rocNum + 1) * self.rocMaxCol + 1 # - 1 ???

                rocCol = rocNum + 1

                pixelArr, medFiltRes, columnsWithSuspiciouslyNoisyPixels, sciPyMedFiltRes = self.__getROCData(hist, startPixel, endPixel, row, 3, 5)

                if pixelArr == None:
                  continue

                # meanOfPixels = sum(pixelArr) / len(pixelArr)
                # pixelArrSorted = deepcopy(pixelArr)
                # pixelArrSorted.sort()
                # outputFile.write("%s: <x> <med_min> VS. <med_max> | x_min:\t%f %f %f | %f, %f, %f, %f\n" % (hist.GetName(), meanOfPixels, min(medFiltRes), max(medFiltRes), pixelArrSorted[0], pixelArrSorted[1], pixelArrSorted[2], pixelArrSorted[3]))

                if "F" not in layer:
                  # pixelArrWithoutDrops = self.__getPixelArrWithRemovedDrops(pixelArr, medFiltRes)
                  pixelArrWithoutDrops = self.__getPixelArrWithRemovedDrops(pixelArr, sciPyMedFiltRes)
                  pixelArrWithoutDropsNormalized = self.__normalizeArray(pixelArrWithoutDrops)
                  # tmp_mean = sum(pixelArrWithoutDropsNormalized) / len(pixelArrWithoutDropsNormalized)
                  # pixelArrWithoutDropsNormalized = self.__setNormalizedArrayZeroInThePoint(pixelArrWithoutDropsNormalized, tmp_mean)

                  # print(min(pixelArrWithoutDropsNormalized), max(pixelArrWithoutDropsNormalized))
                  result = self.__determineBarrelDColInefficiencyAndNoise(medFiltRes, hist.GetName(), pixelArr, pixelArrWithoutDropsNormalized, startPixel, rocCol, row, outputFile, columnsWithSuspiciouslyNoisyPixels, noiseFile)
                else:
                  result = self.__determineEndcapDColInefficiencyAndNoise(medFiltRes, hist.GetName(), pixelArr, startPixel, rocCol, row, outputFile, columnsWithSuspiciouslyNoisyPixels, noiseFile)

                doubleDeadCols, doubleDeadColsInLayer = doubleDeadCols + result[0], doubleDeadColsInLayer + result[0]
                noisyColsNum, noisyColsNumInLayer = noisyColsNum + result[1], noisyColsNumInLayer + result[1]

          outputFile.write("\n\tTOTAL IN LAYER/DISK: %d\n\n" % (doubleDeadColsInLayer))
          noiseFile.write("\n\tTOTAL IN LAYER/DISK: %d\n\n" % (noisyColsNumInLayer))

    print("Number of inefficient double columns: %d"%(doubleDeadCols))
    print("Number of noisy cols: %d"%(noisyColsNum))


#--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--
for i in range(1, len(sys.argv), 1):
  if i == 1:
    inputFileName = sys.argv[i]

runNum = ((inputFileName.split("/")[-1].split("."))[0].split("_R000"))[1]
print("Run number: %s"%(runNum))
baseRootDir = ["DQMData/Run " + runNum + "/PixelPhase1/Run summary/Phase1_MechanicalView"]
print(baseRootDir[0])
outputFileName = "inefficientDPixelColumns.txt"
noiseOutputFileName = "noisyPixelColumns.txt"

readerObj = InefficientDeadROCs(inputFileName, outputFileName, noiseOutputFileName, baseRootDir)
readerObj.ReadHistograms()