Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
#include "DQMOffline/Hcal/interface/HcalRecHitsDQMClient.h"
#include "FWCore/Framework/interface/MakerMacros.h"

#include "FWCore/Framework/interface/Event.h"
#include "FWCore/Framework/interface/Run.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "FWCore/Utilities/interface/Transition.h"
#include "FWCore/Utilities/interface/ESInputTag.h"

#include "DQMServices/Core/interface/DQMStore.h"

HcalRecHitsDQMClient::HcalRecHitsDQMClient(const edm::ParameterSet &iConfig)
    : conf_(iConfig),
      hcalDDDRecConstantsToken_{esConsumes<HcalDDDRecConstants, HcalRecNumberingRecord, edm::Transition::BeginRun>()},
      caloGeometryRunToken_{esConsumes<CaloGeometry, CaloGeometryRecord, edm::Transition::BeginRun>()} {
  outputFile_ = iConfig.getUntrackedParameter<std::string>("outputFile", "myfile.root");
  debug_ = false;
  verbose_ = false;
  dirName_ = iConfig.getParameter<std::string>("DQMDirName");
}

HcalRecHitsDQMClient::~HcalRecHitsDQMClient() {}

void HcalRecHitsDQMClient::beginJob() {}

void HcalRecHitsDQMClient::beginRun(const edm::Run &run, const edm::EventSetup &iSetup) {
  HcalDDDRecConstants const &hcons = iSetup.getData(hcalDDDRecConstantsToken_);
  maxDepthHB_ = hcons.getMaxDepth(0);
  maxDepthHE_ = hcons.getMaxDepth(1);
  maxDepthHF_ = std::max(hcons.getMaxDepth(2), 1);
  maxDepthHO_ = hcons.getMaxDepth(3);

  CaloGeometry const &geometry = iSetup.getData(caloGeometryRunToken_);
  const std::vector<DetId> &hbCells = geometry.getValidDetIds(DetId::Hcal, HcalBarrel);
  const std::vector<DetId> &heCells = geometry.getValidDetIds(DetId::Hcal, HcalEndcap);
  const std::vector<DetId> &hoCells = geometry.getValidDetIds(DetId::Hcal, HcalOuter);
  const std::vector<DetId> &hfCells = geometry.getValidDetIds(DetId::Hcal, HcalForward);

  nChannels_[1] = hbCells.size();
  nChannels_[2] = heCells.size();
  nChannels_[3] = hoCells.size();
  nChannels_[4] = hfCells.size();
  nChannels_[0] = nChannels_[1] + nChannels_[2] + nChannels_[3] + nChannels_[4];
  // avoid divide by zero
  for (unsigned i = 0; i < 5; ++i) {
    if (nChannels_[i] == 0)
      nChannels_[i] = 1;
  }

  // std::cout << "Channels HB:" << nChannels_[1] << " HE:" << nChannels_[2] <<
  // " HO:" << nChannels_[3] << " HF:" << nChannels_[4] << std::endl;

  // We hardcode the HF depths because in the dual readout configuration,
  // rechits are not defined for depths 3&4
  maxDepthHF_ = (maxDepthHF_ > 2 ? 2 : maxDepthHF_);  // We reatin the dynamic possibility
                                                      // that HF might have 0 or 1 depths

  maxDepthAll_ = (maxDepthHB_ + maxDepthHO_ > maxDepthHE_ ? maxDepthHB_ + maxDepthHO_ : maxDepthHE_);
  maxDepthAll_ = (maxDepthAll_ > maxDepthHF_ ? maxDepthAll_ : maxDepthHF_);
}

void HcalRecHitsDQMClient::dqmEndJob(DQMStore::IBooker &ibooker, DQMStore::IGetter &igetter) {
  igetter.setCurrentFolder(dirName_);

  if (verbose_)
    std::cout << "\nrunClient" << std::endl;

  std::vector<MonitorElement *> hcalMEs;

  // Since out folders are fixed to three, we can just go over these three
  // folders i.e., CaloTowersD/CaloTowersTask, HcalRecHitsD/HcalRecHitTask,
  // NoiseRatesV/NoiseRatesTask.
  std::vector<std::string> fullPathHLTFolders = igetter.getSubdirs();
  for (unsigned int i = 0; i < fullPathHLTFolders.size(); i++) {
    if (verbose_)
      std::cout << "\nfullPath: " << fullPathHLTFolders[i] << std::endl;
    igetter.setCurrentFolder(fullPathHLTFolders[i]);

    std::vector<std::string> fullSubPathHLTFolders = igetter.getSubdirs();
    for (unsigned int j = 0; j < fullSubPathHLTFolders.size(); j++) {
      if (verbose_)
        std::cout << "fullSub: " << fullSubPathHLTFolders[j] << std::endl;

      if (strcmp(fullSubPathHLTFolders[j].c_str(), "HcalRecHitsD/HcalRecHitTask") == 0) {
        hcalMEs = igetter.getContents(fullSubPathHLTFolders[j]);
        if (verbose_)
          std::cout << "hltMES size : " << hcalMEs.size() << std::endl;
        if (!HcalRecHitsEndjob(hcalMEs))
          std::cout << "\nError in HcalRecHitsEndjob!" << std::endl << std::endl;
      }
    }
  }
}

// called after entering the HcalRecHitsD/HcalRecHitTask directory
// hcalMEs are within that directory
int HcalRecHitsDQMClient::HcalRecHitsEndjob(const std::vector<MonitorElement *> &hcalMEs) {
  MonitorElement *Nhf = nullptr;

  // Search for emap histograms, and collect them into this vector
  // All subdtectors are plotted together in these histograms. We only need to
  // look for different depths
  std::vector<MonitorElement *> emap_depths;

  // This vector is filled occupancy_maps identified by both subdetector and
  // depth
  std::vector<MonitorElement *> occupancy_maps;
  std::vector<std::string> occupancyID;

  // This vector is filled with emean_vs_ieta histograms, they are divided by
  // both subdetector and depth
  std::vector<MonitorElement *> emean_vs_ieta;

  // These are the only histograms filled in this module; however, the
  // histograms are created empty in HcalRecHitsAnalyzer occupancy_vs_ieta,
  // divided by both subdetector and depth
  std::vector<MonitorElement *> occupancy_vs_ieta;
  std::vector<std::string> occupancy_vs_ietaID;

  // RecHit_StatusWord & RecHit_Aux_StatusWord
  // Divided by subdectector
  std::vector<MonitorElement *> RecHit_StatusWord;
  std::vector<float> RecHit_StatusWord_Channels;
  std::vector<MonitorElement *> RecHit_Aux_StatusWord;
  std::vector<float> RecHit_Aux_StatusWord_Channels;

  for (unsigned int ih = 0; ih < hcalMEs.size(); ih++) {
    // N_HF is not special, it is just convient to get the total number of
    // events The number of entries in N_HF is equal to the number of events
    if (hcalMEs[ih]->getName() == "N_HF") {
      Nhf = hcalMEs[ih];
      continue;
    }

    // ***********************
    // * We fill the various MonitorElement vectors by searching for a matching
    // substring
    // * The methods that are used are agnostic to the ordering of vectors
    // ***********************

    if (hcalMEs[ih]->getName().find("emap_depth") != std::string::npos) {
      emap_depths.push_back(hcalMEs[ih]);
      continue;
    }

    if (hcalMEs[ih]->getName().find("occupancy_map_H") != std::string::npos) {
      occupancy_maps.push_back(hcalMEs[ih]);

      // Use occupancyID to save the subdetector and depth information
      // This will help preserve both indifference to vector ordering and
      // specific details of the detector topology The position in occupancyID
      // must correspond to the histogram position in occupancy_maps

      // Save the string after "occupancy_map_"

      std::string prefix = "occupancy_map_";

      occupancyID.push_back(hcalMEs[ih]->getName().substr(prefix.size()));

      continue;
    }

    if (hcalMEs[ih]->getName().find("emean_vs_ieta_H") != std::string::npos) {
      emean_vs_ieta.push_back(hcalMEs[ih]);
      continue;
    }

    if (hcalMEs[ih]->getName().find("occupancy_vs_ieta_H") != std::string::npos) {
      occupancy_vs_ieta.push_back(hcalMEs[ih]);

      // Use occupancy_vs_ietaID to save the subdetector and depth information
      // This will help preserve both indifference to vector ordering and
      // specific details of the detector topology The position in occupancyID
      // must correspond to the histogram position in occupancy_vs_ieta

      // Save the string after "occupancy_vs_ieta_"

      std::string prefix = "occupancy_vs_ieta_";

      occupancy_vs_ietaID.push_back(hcalMEs[ih]->getName().substr(prefix.size()));

      continue;
    }

    if (hcalMEs[ih]->getName().find("HcalRecHitTask_RecHit_StatusWord_H") != std::string::npos) {
      RecHit_StatusWord.push_back(hcalMEs[ih]);

      if (hcalMEs[ih]->getName().find("HB") != std::string::npos) {
        RecHit_StatusWord_Channels.push_back((float)nChannels_[1]);
      } else if (hcalMEs[ih]->getName().find("HE") != std::string::npos) {
        RecHit_StatusWord_Channels.push_back((float)nChannels_[2]);
      } else if (hcalMEs[ih]->getName().find("H0") != std::string::npos) {
        RecHit_StatusWord_Channels.push_back((float)nChannels_[3]);
      } else if (hcalMEs[ih]->getName().find("HF") != std::string::npos) {
        RecHit_StatusWord_Channels.push_back((float)nChannels_[4]);
      } else {
        RecHit_StatusWord_Channels.push_back(1.);
      }

      continue;
    }

    if (hcalMEs[ih]->getName().find("HcalRecHitTask_RecHit_Aux_StatusWord_H") != std::string::npos) {
      RecHit_Aux_StatusWord.push_back(hcalMEs[ih]);

      if (hcalMEs[ih]->getName().find("HB") != std::string::npos) {
        RecHit_Aux_StatusWord_Channels.push_back((float)nChannels_[1]);
      } else if (hcalMEs[ih]->getName().find("HE") != std::string::npos) {
        RecHit_Aux_StatusWord_Channels.push_back((float)nChannels_[2]);
      } else if (hcalMEs[ih]->getName().find("H0") != std::string::npos) {
        RecHit_Aux_StatusWord_Channels.push_back((float)nChannels_[3]);
      } else if (hcalMEs[ih]->getName().find("HF") != std::string::npos) {
        RecHit_Aux_StatusWord_Channels.push_back((float)nChannels_[4]);
      } else {
        RecHit_Aux_StatusWord_Channels.push_back(1.);
      }

      continue;
    }
  }

  // mean energies and occupancies evaluation
  assert(Nhf);                        // Avoid LLVM analyzer warning
  double nevtot = Nhf->getEntries();  // Use the number of entries in the Nhf histogram to
                                      // give the total number of events

  if (verbose_)
    std::cout << "nevtot : " << nevtot << std::endl;

  // emap histograms are scaled by the number of events
  float fev = float(nevtot);
  double scaleBynevtot = 1 / fev;

  // In this and the following histogram vectors, recognize that the for-loop
  // index does not have to correspond to any particular depth
  for (unsigned int depthIdx = 0; depthIdx < emap_depths.size(); depthIdx++) {
    int nx = emap_depths[depthIdx]->getNbinsX();
    int ny = emap_depths[depthIdx]->getNbinsY();

    float cnorm;
    float enorm;

    for (int i = 1; i <= nx; i++) {
      for (int j = 1; j <= ny; j++) {
        cnorm = emap_depths[depthIdx]->getBinContent(i, j) * scaleBynevtot;
        enorm = emap_depths[depthIdx]->getBinError(i, j) * scaleBynevtot;
        emap_depths[depthIdx]->setBinContent(i, j, cnorm);
        emap_depths[depthIdx]->setBinError(i, j, enorm);
      }
    }
  }

  // occupancy_maps & matched occupancy_vs_ieta

  bool omatched = false;

  for (unsigned int occupancyIdx = 0; occupancyIdx < occupancy_maps.size(); occupancyIdx++) {
    int nx = occupancy_maps[occupancyIdx]->getNbinsX();
    int ny = occupancy_maps[occupancyIdx]->getNbinsY();

    float cnorm;
    float enorm;

    unsigned int vsIetaIdx = 0;
    omatched = false;

    for (; vsIetaIdx < occupancy_vs_ieta.size(); vsIetaIdx++) {
      if (occupancyID[occupancyIdx] == occupancy_vs_ietaID[vsIetaIdx]) {
        omatched = true;
        break;
      }
    }  // match occupancy_vs_ieta histogram

    for (int i = 1; i <= nx; i++) {
      for (int j = 1; j <= ny; j++) {
        cnorm = occupancy_maps[occupancyIdx]->getBinContent(i, j) * scaleBynevtot;
        enorm = occupancy_maps[occupancyIdx]->getBinError(i, j) * scaleBynevtot;
        occupancy_maps[occupancyIdx]->setBinContent(i, j, cnorm);
        occupancy_maps[occupancyIdx]->setBinError(i, j, enorm);
      }
    }

    // Fill occupancy_vs_ieta

    if (omatched) {
      // We run over all of the ieta values
      for (int ieta = -41; ieta <= 41; ieta++) {
        float phi_factor = 1.;
        float sumphi = 0.;
        float sumphie = 0.;

        if (ieta == 0)
          continue;  // ieta=0 is not defined

        phi_factor = phifactor(ieta);

        // the rechits occupancy map defines iphi as 0..71
        for (int iphi = 0; iphi <= 71; iphi++) {
          int binIeta = occupancy_maps[occupancyIdx]->getTH2F()->GetXaxis()->FindBin(float(ieta));
          int binIphi = occupancy_maps[occupancyIdx]->getTH2F()->GetYaxis()->FindBin(float(iphi));

          float content = occupancy_maps[occupancyIdx]->getBinContent(binIeta, binIphi);
          float econtent = occupancy_maps[occupancyIdx]->getBinError(binIeta, binIphi);

          sumphi += content;
          sumphie += econtent * econtent;
        }  // for loop over phi

        int ietabin = occupancy_vs_ieta[vsIetaIdx]->getTH1F()->GetXaxis()->FindBin(float(ieta));

        // fill occupancies vs ieta
        cnorm = sumphi / phi_factor;
        enorm = sqrt(sumphie) / phi_factor;
        occupancy_vs_ieta[vsIetaIdx]->setBinContent(ietabin, cnorm);
        occupancy_vs_ieta[vsIetaIdx]->setBinError(ietabin, enorm);

      }  // Fill occupancy_vs_ieta
    }  // if omatched
  }

  // Status Word
  // Normalized by number of events and by number of channels per subdetector as
  // well

  for (unsigned int StatusWordIdx = 0; StatusWordIdx < RecHit_StatusWord.size(); StatusWordIdx++) {
    int nx = RecHit_StatusWord[StatusWordIdx]->getNbinsX();

    float cnorm;
    float enorm;

    for (int i = 1; i <= nx; i++) {
      cnorm = RecHit_StatusWord[StatusWordIdx]->getBinContent(i) * scaleBynevtot /
              RecHit_StatusWord_Channels[StatusWordIdx];
      enorm =
          RecHit_StatusWord[StatusWordIdx]->getBinError(i) * scaleBynevtot / RecHit_StatusWord_Channels[StatusWordIdx];
      RecHit_StatusWord[StatusWordIdx]->setBinContent(i, cnorm);
      RecHit_StatusWord[StatusWordIdx]->setBinError(i, enorm);
    }
  }

  for (unsigned int AuxStatusWordIdx = 0; AuxStatusWordIdx < RecHit_Aux_StatusWord.size(); AuxStatusWordIdx++) {
    int nx = RecHit_Aux_StatusWord[AuxStatusWordIdx]->getNbinsX();

    float cnorm;
    float enorm;

    for (int i = 1; i <= nx; i++) {
      cnorm = RecHit_Aux_StatusWord[AuxStatusWordIdx]->getBinContent(i) * scaleBynevtot /
              RecHit_Aux_StatusWord_Channels[AuxStatusWordIdx];
      enorm = RecHit_Aux_StatusWord[AuxStatusWordIdx]->getBinError(i) * scaleBynevtot /
              RecHit_Aux_StatusWord_Channels[AuxStatusWordIdx];
      RecHit_Aux_StatusWord[AuxStatusWordIdx]->setBinContent(i, cnorm);
      RecHit_Aux_StatusWord[AuxStatusWordIdx]->setBinError(i, enorm);
    }
  }

  return 1;
}

float HcalRecHitsDQMClient::phifactor(int ieta) {
  float phi_factor_;

  if (ieta >= -20 && ieta <= 20) {
    phi_factor_ = 72.;
  } else {
    if (ieta >= 40 || ieta <= -40) {
      phi_factor_ = 18.;
    } else {
      phi_factor_ = 36.;
    }
  }

  return phi_factor_;
}

DEFINE_FWK_MODULE(HcalRecHitsDQMClient);