1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
#include "DQMOffline/Muon/interface/MuonTiming.h"
#include "DataFormats/Common/interface/Handle.h"
#include "DataFormats/MuonReco/interface/Muon.h"
#include "DataFormats/MuonReco/interface/MuonFwd.h"
#include "DataFormats/MuonReco/interface/MuonEnergy.h"
#include "DataFormats/TrackReco/interface/Track.h"
#include "DataFormats/TrackReco/interface/TrackFwd.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include <string>
#include "TMath.h"
using namespace std;
using namespace edm;
MuonTiming::MuonTiming(const edm::ParameterSet& pSet) {
const edm::ParameterSet& parameters = pSet;
// Input booleans
// the services:
theMuonCollectionLabel_ = consumes<edm::View<reco::Muon> >(parameters.getParameter<edm::InputTag>("MuonCollection"));
tnbins_ = parameters.getParameter<int>("tnbins");
tnbinsrpc_ = parameters.getParameter<int>("tnbinsrpc");
terrnbins_ = parameters.getParameter<int>("terrnbins");
terrnbinsrpc_ = parameters.getParameter<int>("terrnbinsrpc");
ndofnbins_ = parameters.getParameter<int>("ndofnbins");
ptnbins_ = parameters.getParameter<int>("ptnbins");
etanbins_ = parameters.getParameter<int>("etanbins");
tmax_ = parameters.getParameter<double>("tmax");
tmaxrpc_ = parameters.getParameter<double>("tmaxrpc");
terrmax_ = parameters.getParameter<double>("terrmax");
terrmaxrpc_ = parameters.getParameter<double>("terrmaxrpc");
ndofmax_ = parameters.getParameter<double>("ndofmax");
ptmax_ = parameters.getParameter<double>("ptmax");
etamax_ = parameters.getParameter<double>("etamax");
tmin_ = parameters.getParameter<double>("tmin");
tminrpc_ = parameters.getParameter<double>("tminrpc");
terrmin_ = parameters.getParameter<double>("terrmin");
terrminrpc_ = parameters.getParameter<double>("terrminrpc");
ndofmin_ = parameters.getParameter<double>("ndofmin");
ptmin_ = parameters.getParameter<double>("ptmin");
etamin_ = parameters.getParameter<double>("etamin");
etaBarrelMin_ = parameters.getParameter<double>("etaBarrelMin");
etaBarrelMax_ = parameters.getParameter<double>("etaBarrelMax");
etaEndcapMin_ = parameters.getParameter<double>("etaEndcapMin");
etaEndcapMax_ = parameters.getParameter<double>("etaEndcapMax");
etaOverlapMin_ = parameters.getParameter<double>("etaOverlapMin");
etaOverlapMax_ = parameters.getParameter<double>("etaOverlapMax");
theFolder_ = parameters.getParameter<string>("folder");
}
MuonTiming::~MuonTiming() {}
void MuonTiming::bookHistograms(DQMStore::IBooker& ibooker,
edm::Run const& /*iRun*/,
edm::EventSetup const& /* iSetup */) {
ibooker.cd();
ibooker.setCurrentFolder(theFolder_);
EtaName_.push_back("_Overlap");
EtaName_.push_back("_Barrel");
EtaName_.push_back("_Endcap");
ObjectName_.push_back("Sta_");
ObjectName_.push_back("Glb_");
for (unsigned int iEtaRegion = 0; iEtaRegion < 3; iEtaRegion++) {
/*std::array<MonitorElement*, 1> timeNDofv_;
std::array<MonitorElement*, 1> timeAtIpInOutv_;
std::array<MonitorElement*, 1> timeAtIpInOutRPCv_;
std::array<MonitorElement*, 1> timeAtIpInOutErrv_;
std::array<MonitorElement*, 1> timeAtIpInOutErrRPCv_;*/
//Only creating so far the timing information for STA muons, however the code can be extended to also Glb by just setting the limit of this loop to 2
for (unsigned int iObjectName = 0; iObjectName < 1; iObjectName++) {
timeNDof_[iEtaRegion][iObjectName] = ibooker.book1D(
ObjectName_[iObjectName] + "timenDOF" + EtaName_[iEtaRegion], "muon time ndof", ndofnbins_, 0, ndofmax_);
timeAtIpInOut_[iEtaRegion][iObjectName] = ibooker.book1D(
ObjectName_[iObjectName] + "timeAtIpInOut" + EtaName_[iEtaRegion], "muon time", tnbins_, tmin_, tmax_);
timeAtIpInOutRPC_[iEtaRegion][iObjectName] =
ibooker.book1D(ObjectName_[iObjectName] + "timeAtIpInOutRPC" + EtaName_[iEtaRegion],
"muon rpc time",
tnbinsrpc_,
tminrpc_,
tmaxrpc_);
timeAtIpInOutErr_[iEtaRegion][iObjectName] =
ibooker.book1D(ObjectName_[iObjectName] + "timeAtIpInOutErr" + EtaName_[iEtaRegion],
"muon time error",
terrnbins_,
terrmin_,
terrmax_);
timeAtIpInOutErrRPC_[iEtaRegion][iObjectName] =
ibooker.book1D(ObjectName_[iObjectName] + "timeAtIpInOutRPCErr" + EtaName_[iEtaRegion],
"muon rpc time error",
terrnbinsrpc_,
terrminrpc_,
terrmaxrpc_);
timeNDof_[iEtaRegion][iObjectName]->setAxisTitle("Time nDof");
timeAtIpInOut_[iEtaRegion][iObjectName]->setAxisTitle("Combined time [ns]");
timeAtIpInOutErr_[iEtaRegion][iObjectName]->setAxisTitle("Combined time Error [ns]");
timeAtIpInOutRPC_[iEtaRegion][iObjectName]->setAxisTitle("RPC time [ns]");
timeAtIpInOutErrRPC_[iEtaRegion][iObjectName]->setAxisTitle("RPC time Error [ns]");
}
/*
timeNDof_[iEtaregion] = timeNDofv_);
timeAtIpInOut_.push_back(timeAtIpInOutv_);
timeAtIpInOutRPC_.push_back(timeAtIpInOutRPCv_);
timeAtIpInOutErr_.push_back(timeAtIpInOutErrv_);
timeAtIpInOutErrRPC_.push_back(timeAtIpInOutErrRPCv_);
*/
}
//Only creating so far the timing information for STA muons, however the code can be extended to also Glb by just setting the limit of this loop to 2
for (unsigned int iObjectName = 0; iObjectName < 1; iObjectName++) {
etaptVeto_[iObjectName] = ibooker.book2D(ObjectName_[iObjectName] + "etapt",
"Eta and Pt distribution for muons not passing the veto",
ptnbins_,
ptmin_,
ptmax_,
etanbins_,
etamin_,
etamax_);
etaVeto_[iObjectName] = ibooker.book1D(ObjectName_[iObjectName] + "eta",
"Eta distribution for muons not passing the veto",
etanbins_,
etamin_,
etamax_);
ptVeto_[iObjectName] = ibooker.book1D(
ObjectName_[iObjectName] + "pt", "Pt distribution for muons not passing the veto", ptnbins_, ptmin_, ptmax_);
yields_[iObjectName] = ibooker.book1D(
ObjectName_[iObjectName] + "yields", "Number of muons passing/not passing the different conditions", 10, 0, 10);
yields_[iObjectName]->setBinLabel(1, "Not valid time");
yields_[iObjectName]->setBinLabel(2, "Valid time");
yields_[iObjectName]->setBinLabel(3, "Not Combined time");
yields_[iObjectName]->setBinLabel(4, "Combined time");
yields_[iObjectName]->setBinLabel(5, "Not RPC time");
yields_[iObjectName]->setBinLabel(6, "RPC time");
yields_[iObjectName]->setBinLabel(7, "Combined not RPC");
yields_[iObjectName]->setBinLabel(8, "RPC not Combined");
yields_[iObjectName]->setBinLabel(9, "Not passing veto");
yields_[iObjectName]->setBinLabel(10, "Passing veto");
etaptVeto_[iObjectName]->setAxisTitle("p_{T} [GeV]");
etaptVeto_[iObjectName]->setAxisTitle("#eta#", 2);
ptVeto_[iObjectName]->setAxisTitle("p_{T} [GeV]");
etaVeto_[iObjectName]->setAxisTitle("#eta");
}
}
void MuonTiming::analyze(const edm::Event& iEvent, const edm::EventSetup& iSetup) {
LogTrace(metname_) << "[MuonTiming] Analyze the mu";
// Take the muon container
edm::Handle<edm::View<reco::Muon> > muons;
iEvent.getByToken(theMuonCollectionLabel_, muons);
if (!muons.isValid())
return;
for (edm::View<reco::Muon>::const_iterator muon = muons->begin(); muon != muons->end(); ++muon) {
const reco::MuonTime time = muon->time();
const reco::MuonTime rpcTime = muon->rpcTime();
//Only creating so far the timing information for STA muons
if (!muon->isStandAloneMuon() || muon->isGlobalMuon())
continue;
reco::TrackRef track;
//Select whether it's a global or standalone muon
object_ theObject = sta;
if (muon->isGlobalMuon()) {
track = muon->combinedMuon();
theObject = glb;
} else {
track = muon->standAloneMuon();
theObject = sta;
}
//These definitions have been taken from Piotr Traczyk
bool cmbok = (time.nDof > 7);
bool rpcok = (rpcTime.nDof > 1 && rpcTime.timeAtIpInOutErr == 0);
bool veto = false;
if (rpcok) {
if ((fabs(rpcTime.timeAtIpInOut) > 10) && !(cmbok && fabs(time.timeAtIpInOut) < 10))
veto = true;
else if (cmbok && (time.timeAtIpInOut > 20 || time.timeAtIpInOut < -45))
veto = true;
}
//std::cout << time.timeAtIpInOut << std::endl;
//Filling the yields histogram
if (muon->isTimeValid())
yields_[theObject]->Fill(1);
else
yields_[theObject]->Fill(0);
if (cmbok)
yields_[theObject]->Fill(3);
else
yields_[theObject]->Fill(2);
if (rpcok)
yields_[theObject]->Fill(5);
else
yields_[theObject]->Fill(4);
if (cmbok && !rpcok)
yields_[theObject]->Fill(6);
if (!cmbok && rpcok)
yields_[theObject]->Fill(7);
if (veto)
yields_[theObject]->Fill(8);
else
yields_[theObject]->Fill(9);
//Starting now with the pt and eta for vetoed and not vetoed muons
if (veto) {
etaptVeto_[theObject]->Fill(track->pt(), track->eta());
etaVeto_[theObject]->Fill(track->eta());
ptVeto_[theObject]->Fill(track->pt());
}
//Check the eta region of the muon
eta_ theEta = barrel;
if (fabs(track->eta()) >= etaBarrelMin_ && fabs(track->eta()) <= etaBarrelMax_)
theEta = barrel;
if (fabs(track->eta()) >= etaOverlapMin_ && fabs(track->eta()) <= etaOverlapMax_)
theEta = overlap;
if (fabs(track->eta()) >= etaEndcapMin_ && fabs(track->eta()) <= etaEndcapMax_)
theEta = endcap;
timeNDof_[theEta][theObject]->Fill(time.nDof);
timeAtIpInOut_[theEta][theObject]->Fill(time.timeAtIpInOut);
timeAtIpInOutRPC_[theEta][theObject]->Fill(rpcTime.timeAtIpInOut);
timeAtIpInOutErr_[theEta][theObject]->Fill(time.timeAtIpInOutErr);
timeAtIpInOutErrRPC_[theEta][theObject]->Fill(rpcTime.timeAtIpInOutErr);
}
}
|