Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
//-----------------------------------------------------------------------
//
//	Convoluted Landau and Gaussian Fitting Function
//         (using ROOT's Landau and Gauss functions)
//
//  Based on a Fortran code by R.Fruehwirth (fruhwirth@hephy.oeaw.ac.at)
//  Adapted for C++/ROOT by H.Pernegger (Heinz.Pernegger@cern.ch) and
//   Markus Friedl (Markus.Friedl@cern.ch)
//
//  to execute this example, do:
//  root > .x langaus.C
// or
//  root > .x langaus.C++
//
//-----------------------------------------------------------------------

#include "TH1.h"
#include "TF1.h"
#include "TROOT.h"
#include "TStyle.h"
#include "TMath.h"

Double_t langaufun(Double_t *x, Double_t *par) {
  //Fit parameters:
  //par[0]=Width (scale) parameter of Landau density
  //par[1]=Most Probable (MP, location) parameter of Landau density
  //par[2]=Total area (integral -inf to inf, normalization constant)
  //par[3]=Width (sigma) of convoluted Gaussian function
  //
  //In the Landau distribution (represented by the CERNLIB approximation),
  //the maximum is located at x=-0.22278298 with the location parameter=0.
  //This shift is corrected within this function, so that the actual
  //maximum is identical to the MP parameter.

  // Numeric constants
  Double_t invsq2pi = 0.3989422804014;  // (2 pi)^(-1/2)
  Double_t mpshift = -0.22278298;       // Landau maximum location

  // Control constants
  Double_t np = 100.0;  // number of convolution steps
  Double_t sc = 5.0;    // convolution extends to +-sc Gaussian sigmas

  // Variables
  Double_t xx;
  Double_t mpc;
  Double_t fland;
  Double_t sum = 0.0;
  Double_t xlow, xupp;
  Double_t step;
  Double_t i;

  // MP shift correction
  mpc = par[1] - mpshift * par[0];

  // Range of convolution integral
  xlow = x[0] - sc * par[3];
  xupp = x[0] + sc * par[3];

  step = (xupp - xlow) / np;

  // Convolution integral of Landau and Gaussian by sum
  for (i = 1.0; i <= np / 2; i++) {
    xx = xlow + (i - .5) * step;
    fland = TMath::Landau(xx, mpc, par[0]) / par[0];
    sum += fland * TMath::Gaus(x[0], xx, par[3]);

    xx = xupp - (i - .5) * step;
    fland = TMath::Landau(xx, mpc, par[0]) / par[0];
    sum += fland * TMath::Gaus(x[0], xx, par[3]);
  }

  return (par[2] * step * sum * invsq2pi / par[3]);
}

TF1 *langaufit(TH1F *his,
               Double_t *fitrange,
               Double_t *startvalues,
               Double_t *parlimitslo,
               Double_t *parlimitshi,
               Double_t *fitparams,
               Double_t *fiterrors,
               Double_t *ChiSqr,
               Int_t *NDF) {
  // Once again, here are the Landau * Gaussian parameters:
  //   par[0]=Width (scale) parameter of Landau density
  //   par[1]=Most Probable (MP, location) parameter of Landau density
  //   par[2]=Total area (integral -inf to inf, normalization constant)
  //   par[3]=Width (sigma) of convoluted Gaussian function
  //
  // Variables for langaufit call:
  //   his             histogram to fit
  //   fitrange[2]     lo and hi boundaries of fit range
  //   startvalues[4]  reasonable start values for the fit
  //   parlimitslo[4]  lower parameter limits
  //   parlimitshi[4]  upper parameter limits
  //   fitparams[4]    returns the final fit parameters
  //   fiterrors[4]    returns the final fit errors
  //   ChiSqr          returns the chi square
  //   NDF             returns ndf

  Int_t i;
  Char_t FunName[100];

  sprintf(FunName, "Fitfcn_%s", his->GetName());

  TF1 *ffitold = (TF1 *)gROOT->GetListOfFunctions()->FindObject(FunName);
  if (ffitold)
    delete ffitold;

  TF1 *ffit = new TF1(FunName, langaufun, fitrange[0], fitrange[1], 4);
  ffit->SetParameters(startvalues);
  ffit->SetParNames("Width", "MP", "Area", "GSigma");

  for (i = 0; i < 4; i++) {
    ffit->SetParLimits(i, parlimitslo[i], parlimitshi[i]);
  }

  try {
    his->Fit(FunName, "RB0Q SERIAL");  // fit within specified range, use ParLimits, do not plot
  } catch (...) {
  }

  if (ffit) {
    ffit->GetParameters(fitparams);  // obtain fit parameters
    for (i = 0; i < 4; i++) {
      fiterrors[i] = ffit->GetParError(i);  // obtain fit parameter errors
    }
    ChiSqr[0] = ffit->GetChisquare();  // obtain chi^2
    NDF[0] = ffit->GetNDF();           // obtain ndf
  }

  return (ffit);  // return fit function
}

Int_t langaupro(Double_t *params, Double_t &maxx, Double_t &FWHM) {
  // Seaches for the location (x value) at the maximum of the
  // Landau-Gaussian convolute and its full width at half-maximum.
  //
  // The search is probably not very efficient, but it's a first try.

  Double_t p, x, fy, fxr, fxl;
  Double_t step;
  Double_t l, lold;
  Int_t i = 0;
  Int_t MAXCALLS = 10000;

  // Search for maximum

  p = params[1] - 0.1 * params[0];
  step = 0.05 * params[0];
  lold = -2.0;
  l = -1.0;

  while ((l != lold) && (i < MAXCALLS)) {
    i++;

    lold = l;
    x = p + step;
    l = langaufun(&x, params);

    if (l < lold)
      step = -step / 10;

    p += step;
  }

  if (i == MAXCALLS)
    return (-1);

  [[clang::suppress]] maxx = x;

  fy = l / 2;

  // Search for right x location of fy

  p = maxx + params[0];
  step = params[0];
  lold = -2.0;
  l = -1e300;
  i = 0;

  while ((l != lold) && (i < MAXCALLS)) {
    i++;

    lold = l;
    x = p + step;
    l = TMath::Abs(langaufun(&x, params) - fy);

    if (l > lold)
      step = -step / 10;

    p += step;
  }

  if (i == MAXCALLS)
    return (-2);

  fxr = x;

  // Search for left x location of fy

  p = maxx - 0.5 * params[0];
  step = -params[0];
  lold = -2.0;
  l = -1e300;
  i = 0;

  while ((l != lold) && (i < MAXCALLS)) {
    i++;

    lold = l;
    x = p + step;
    l = TMath::Abs(langaufun(&x, params) - fy);

    if (l > lold)
      step = -step / 10;

    p += step;
  }

  if (i == MAXCALLS)
    return (-3);

  fxl = x;

  FWHM = fxr - fxl;
  return (0);
}