1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
#!/usr/bin/env python3
import re
import json
import ROOT
import sqlite3
import argparse
import subprocess
import multiprocessing
import fnmatch
ROOTPREFIX = "root://cms-xrd-global.cern.ch/"
#ROOTPREFIX = "root://eoscms//eos/cms" # for more local files
parser = argparse.ArgumentParser(description="Collect a MEs from DQMIO data, with maximum possible granularity")
parser.add_argument('dataset', help='dataset name, like "/StreamHIExpress/HIRun2018A-Express-v1/DQMIO"')
parser.add_argument('-o', '--output', help='SQLite file to write', default='dqmio.sqlite')
parser.add_argument('-j', '--njobs', help='Number of threads to read files', type=int, default=1)
parser.add_argument('-l', '--limit', help='Only load up to LIMIT files', type=int, default=-1)
args = parser.parse_args()
# we can save a lot of time by only scanning some types, if we know all interesting MEs are of these types.
interesting_types = {
"TH1Fs",
"TH1Ds",
"TH2Fs"
}
# insert the list of needed histograms below, wild cards are usable
interesting_mes = [
"PixelPhase1/Phase1_MechanicalView/PXBarrel/adc_PXLayer*",
]
inf = re.compile("([- \[])inf([,}\]])")
nan = re.compile("([- \[])nan([,}\]])")
def check_interesting(mename):
for pattern in interesting_mes:
if fnmatch.fnmatch(mename,pattern):
return True
return False
def tosqlite(x):
if isinstance(x, ROOT.string):
try:
return unicode(x.data())
except:
return buffer(x.data())
if isinstance(x, int):
return x
if isinstance(x, float):
return x
if isinstance(x, int):
return x
else:
try:
rootobj = unicode(ROOT.TBufferJSON.ConvertToJSON(x))
# turns out ROOT does not generate valid JSON for NaN/inf
clean = nan.sub('\\g<1>0\\g<2>', inf.sub('\\g<1>1e38\\g<2>', rootobj))
obj = json.loads(clean)
jsonobj = json.dumps(obj, allow_nan=False)
return jsonobj
except Exception as e:
return json.dumps({"root2sqlite_error": e.__repr__(), "root2sqlite_object": x.__repr__()})
def dasquery(dataset):
if not dataset.endswith("DQMIO"):
raise Exception("This tool probably cannot read the dataset you specified. The name should end with DQMIO.")
dasquery = ["dasgoclient", "-query=file dataset=%s" % dataset]
print("Querying das ... %s" % dasquery)
files = subprocess.check_output(dasquery)
files = files.splitlines()
print("Got %d files." % len(files))
return files
treenames = {
0: "Ints",
1: "Floats",
2: "Strings",
3: "TH1Fs",
4: "TH1Ss",
5: "TH1Ds",
6: "TH2Fs",
7: "TH2Ss",
8: "TH2Ds",
9: "TH3Fs",
10: "TProfiles",
11: "TProfile2Ds",
}
maketable = """
CREATE TABLE IF NOT EXISTS monitorelements (
name,
fromrun, fromlumi, torun, tolumi,
metype,
value
); """
makeindex = """
CREATE INDEX runorder ON monitorelements(fromrun, fromlumi);
"""
insertinto = """
INSERT INTO monitorelements (
name,
fromrun, fromlumi, torun, tolumi,
metype,
value
) VALUES (
?, ?, ?, ?, ?, ?, ?
); """
dumpmes = """
SELECT fromlumi, tolumi, fromrun, name, value FROM monitorelements ORDER BY fromrun, fromlumi ASC;
"""
db = sqlite3.connect(args.output)
db.execute(maketable)
db.execute(makeindex)
def harvestfile(fname):
f = ROOT.TFile.Open(ROOTPREFIX + fname)
idxtree = getattr(f, "Indices")
#idxtree.GetEntry._threaded = True # now the blocking call should release the GIL...
# we have no good way to find out which lumis where processed in a job.
# so we watch the per-lumi indices and assume that all mentioned lumis
# are covered in the end-of-job MEs. This might fail if there are no
# per-lumi MEs.
knownlumis = set()
mes_to_store = []
for i in range(idxtree.GetEntries()):
idxtree.GetEntry(i)
run, lumi, metype = idxtree.Run, idxtree.Lumi, idxtree.Type
if lumi != 0:
knownlumis.add(lumi)
if not treenames[metype] in interesting_types:
continue
endrun = run # assume no multi-run files for now
if lumi == 0: # per-job ME
endlumi = max(knownlumis)
lumi = min(knownlumis)
else:
endlumi = lumi
# inclusive range -- for 0 entries, row is left out
firstidx, lastidx = idxtree.FirstIndex, idxtree.LastIndex
metree = getattr(f, treenames[metype])
metree.GetEntry(0)
metree.SetBranchStatus("*",0)
metree.SetBranchStatus("FullName",1)
for x in range(firstidx, lastidx+1):
metree.GetEntry(x)
mename = str(metree.FullName)
if mename.find("AlCaReco") != -1:
continue
if mename.find("Isolated") != -1:
continue
if mename.find("HLT") != -1:
continue
if not ((mename.find("SiStrip") >= 0) or (mename.find("OfflinePV") >= 0) or (mename.find("PixelPhase1") >= 0) or (mename.find("Tracking") >= 0 )):
continue
if check_interesting(mename):
metree.GetEntry(x, 1)
value = metree.Value
mes_to_store.append((
mename,
run, lumi, endrun, endlumi,
metype,
tosqlite(value),
))
return mes_to_store
files = dasquery(args.dataset)
if args.limit > 0: files = files[:args.limit]
pool = multiprocessing.Pool(processes=args.njobs)
ctr = 0
for mes_to_store in pool.imap_unordered(harvestfile, files):
#for mes_to_store in map(harvestfile, files):
db.executemany(insertinto, mes_to_store);
db.commit()
ctr += 1
print("Processed %d files of %d, got %d MEs...\r" % (ctr, len(files), len(mes_to_store)), end='')
print("\nDone.")
sqlite2tree = """
// Convert the sqlite format saved above back into a TTree.
// Saving TTrees with objects (TH1's) seems to be close to impossible in Python,
// so we do the roundtrip via SQLite and JSON in a ROOT macro.
// This needs a ROOT with TBufferJSON::FromJSON, which the 6.12 in CMSSW for
// for now does not have. We can load a newer version from SFT (on lxplus6,
// in (!) a cmsenv):
// source /cvmfs/sft.cern.ch/lcg/releases/ROOT/6.16.00-f8770/x86_64-slc6-gcc8-opt/bin/thisroot.sh
// root sqlite2tree.C
// It is rather slow, but the root file is a lot more compact.
int run;
int fromlumi;
int tolumi;
TString* name;
TH2F* value;
int sqlite2tree() {
auto sql = TSQLiteServer("sqlite:///dev/shm/schneiml/CMSSW_10_5_0_pre1/src/dqmio.sqlite");
auto query = "SELECT fromlumi, tolumi, fromrun, name, value FROM monitorelements ORDER BY fromrun, fromlumi ASC;";
auto res = sql.Query(query);
TFile outfile("/dev/shm/dqmio.root", "RECREATE");
auto outtree = new TTree("MEs", "MonitorElements by run and lumisection");
auto nameb = outtree->Branch("name", &name);
auto valueb = outtree->Branch("value", &value,128*1024);
auto runb = outtree->Branch("run", &run);
auto fromlumib = outtree->Branch("fromlumi",&fromlumi);
auto tolumib = outtree->Branch("tolumi", &tolumi);
while (auto row = res->Next()) {
fromlumi = atoi(row->GetField(0));
tolumi = atoi(row->GetField(1));
run = atoi(row->GetField(2));
name = new TString(row->GetField(3));
value = nullptr;
TBufferJSON::FromJSON(value, row->GetField(4));
outtree->Fill();
}
return 0;
}
"""
|