CSCCorrelatedLCTDigi

LCTBXMask

Type

Version

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
#ifndef DataFormats_CSCDigi_CSCCorrelatedLCTDigi_h
#define DataFormats_CSCDigi_CSCCorrelatedLCTDigi_h

/**\class CSCCorrelatedLCTDigi
 *
 * Digi for Correlated LCT trigger primitives.
 *
 *
 * \author L. Gray, UF
 */

#include <cstdint>
#include <iosfwd>
#include <limits>
#include "DataFormats/CSCDigi/interface/CSCALCTDigi.h"
#include "DataFormats/CSCDigi/interface/CSCCLCTDigi.h"
#include "DataFormats/GEMDigi/interface/GEMPadDigi.h"

class CSCCorrelatedLCTDigi {
public:
  enum class Version { Legacy = 0, Run3 };
  // for data vs emulator studies
  enum LCTBXMask { kBXDataMask = 0x1 };

  /// SIMULATION ONLY ////
  enum Type {
    CLCTALCT,      // CLCT-centric
    ALCTCLCT,      // ALCT-centric
    ALCTCLCTGEM,   // ALCT-CLCT-1 GEM pad
    ALCTCLCT2GEM,  // ALCT-CLCT-2 GEM pads in coincidence
    ALCT2GEM,      // ALCT-2 GEM pads in coincidence
    CLCT2GEM,      // CLCT-2 GEM pads in coincidence
    CLCTONLY,      // Missing ALCT
    ALCTONLY       // Missing CLCT
  };

  /// Constructors
  CSCCorrelatedLCTDigi(const uint16_t trknmb,
                       const uint16_t valid,
                       const uint16_t quality,
                       const uint16_t keywire,
                       const uint16_t strip,
                       const uint16_t pattern,
                       const uint16_t bend,
                       const uint16_t bx,
                       const uint16_t mpclink = 0,
                       const uint16_t bx0 = 0,
                       const uint16_t syncErr = 0,
                       const uint16_t cscID = 0,
                       const Version version = Version::Legacy,
                       const bool run3_quart_strip_bit = false,
                       const bool run3_eighth_strip_bit = false,
                       const uint16_t run3_pattern = 0,
                       const uint16_t run3_slope = 0,
                       const int type = ALCTCLCT);

  /// default (calls clear())
  CSCCorrelatedLCTDigi();

  /// clear this LCT
  void clear();

  /// return track number
  uint16_t getTrknmb() const { return trknmb; }

  /// return valid pattern bit
  bool isValid() const { return valid; }

  /// return the Quality
  uint16_t getQuality() const { return quality; }

  /// return the key wire group. counts from 0.
  uint16_t getKeyWG() const { return keywire; }

  /// return the key halfstrip from 0,159
  uint16_t getStrip(uint16_t n = 2) const;

  /// set single quart strip bit
  void setQuartStripBit(const bool quartStripBit) { run3_quart_strip_bit_ = quartStripBit; }

  /// get single quart strip bit
  bool getQuartStripBit() const { return run3_quart_strip_bit_; }

  /// set single eighth strip bit
  void setEighthStripBit(const bool eighthStripBit) { run3_eighth_strip_bit_ = eighthStripBit; }

  /// get single eighth strip bit
  bool getEighthStripBit() const { return run3_eighth_strip_bit_; }

  /*
    Strips are numbered starting from 1 in CMSSW
    Half-strips, quarter-strips and eighth-strips are numbered starting from 0
    The table below shows the correct numbering
    ---------------------------------------------------------------------------------
    strip     |               1               |                 2                   |
    ---------------------------------------------------------------------------------
    1/2-strip |       0       |       1       |       2         |         3         |
    ---------------------------------------------------------------------------------
    1/4-strip |   0   |   1   |   2   |   3   |   4   |    5    |    6    |    7    |
    ---------------------------------------------------------------------------------
    1/8-strip | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
    ---------------------------------------------------------------------------------

    Note: the CSC geometry also has a strip offset of +/- 0.25 strips. When comparing the
    CLCT/LCT position with the true muon position, take the offset into account!
   */
  float getFractionalStrip(uint16_t n = 2) const;

  /// return the Run-2 pattern ID
  uint16_t getPattern() const { return pattern; }

  /// return the Run-3 pattern ID
  uint16_t getRun3Pattern() const { return run3_pattern_; }

  /// return the slope
  uint16_t getSlope() const { return run3_slope_; }

  /// slope in number of half-strips/layer
  /// negative means left-bending
  /// positive means right-bending
  float getFractionalSlope() const;

  /// return left/right bending
  /// 0: left-bending (negative delta-strip / delta layer)
  /// 1: right-bending (positive delta-strip / delta layer)
  uint16_t getBend() const { return bend; }

  /// return BX
  uint16_t getBX() const { return bx; }

  /// return 1-bit BX as in data
  uint16_t getBXData() const { return bx & kBXDataMask; }

  /// return CLCT pattern number (in use again Feb 2011)
  /// This function should not be used for Run-3
  uint16_t getCLCTPattern() const;

  /// return strip type (obsolete since mid-2008)
  uint16_t getStripType() const { return ((pattern & 0x8) >> 3); }

  /// return MPC link number, 0 means not sorted, 1-3 give MPC sorting rank
  uint16_t getMPCLink() const { return mpclink; }

  uint16_t getCSCID() const { return cscID; }
  uint16_t getBX0() const { return bx0; }
  uint16_t getSyncErr() const { return syncErr; }

  /// Run-3 introduces high-multiplicity bits for CSCs.
  /// The allocation is different for ME1/1 and non-ME1/1
  /// chambers. Both LCTs in a chamber are needed for the complete
  /// high-multiplicity trigger information
  uint16_t getHMT() const;

  /// Set track number (1,2) after sorting LCTs.
  void setTrknmb(const uint16_t number) { trknmb = number; }

  /// Set mpc link number after MPC sorting
  void setMPCLink(const uint16_t& link) { mpclink = link; }

  /// Print content of correlated LCT digi
  void print() const;

  ///Comparison
  bool operator==(const CSCCorrelatedLCTDigi&) const;
  bool operator!=(const CSCCorrelatedLCTDigi& rhs) const { return !(this->operator==(rhs)); }

  /// set wiregroup number
  void setWireGroup(const uint16_t wiregroup) { keywire = wiregroup; }

  /// set quality code
  void setQuality(const uint16_t q) { quality = q; }

  /// set valid
  void setValid(const uint16_t v) { valid = v; }

  /// set strip
  void setStrip(const uint16_t s) { strip = s; }

  /// set pattern
  void setPattern(const uint16_t p) { pattern = p; }

  /// set Run-3 pattern
  void setRun3Pattern(const uint16_t pattern) { run3_pattern_ = pattern; }

  /// set the slope
  void setSlope(const uint16_t slope) { run3_slope_ = slope; }

  /// set bend
  void setBend(const uint16_t b) { bend = b; }

  /// set bx
  void setBX(const uint16_t b) { bx = b; }

  /// set bx0
  void setBX0(const uint16_t b) { bx0 = b; }

  /// set syncErr
  void setSyncErr(const uint16_t s) { syncErr = s; }

  /// set cscID
  void setCSCID(const uint16_t c) { cscID = c; }

  /// set high-multiplicity bits
  void setHMT(const uint16_t h);

  /// Distinguish Run-1/2 from Run-3
  bool isRun3() const { return version_ == Version::Run3; }

  void setRun3(const bool isRun3);

  int getType() const { return type_; }

  void setType(int type) { type_ = type; }

  void setALCT(const CSCALCTDigi& alct) { alct_ = alct; }
  void setCLCT(const CSCCLCTDigi& clct) { clct_ = clct; }
  void setGEM1(const GEMPadDigi& gem) { gem1_ = gem; }
  void setGEM2(const GEMPadDigi& gem) { gem2_ = gem; }
  const CSCALCTDigi& getALCT() const { return alct_; }
  const CSCCLCTDigi& getCLCT() const { return clct_; }
  const GEMPadDigi& getGEM1() const { return gem1_; }
  const GEMPadDigi& getGEM2() const { return gem2_; }

private:
  // Note: The Run-3 data format is substantially different than the
  // Run-1/2 data format. Some explanation is provided below. For
  // more information, please check "DN-20-016".

  // Run-1, Run-2 and Run-3 trknmb is either 1 or 2.
  uint16_t trknmb;
  // In Run-3, the valid will be encoded as a quality
  // value "000" or "00".
  uint16_t valid;
  // In Run-3, the LCT quality number will be 2 or 3 bits
  // For ME1/1 chambers: 3 bits
  // For non-ME1/1 chambers: 2 bits
  uint16_t quality;
  // 7-bit key wire
  uint16_t keywire;
  // actually the 8-bit half-strip number
  uint16_t strip;
  // Run-1/2 pattern number.
  // For Run-3 CLCTs, please use run3_pattern_. For some backward
  // compatibility the trigger emulator translates run3_pattern_
  // approximately into pattern_ with a lookup table
  uint16_t pattern;
  // Common definition for left/right bending in Run-1, Run-2 and Run-3.
  // 0: right; 1: left
  uint16_t bend;
  uint16_t bx;
  uint16_t mpclink;
  uint16_t bx0;
  // The synchronization bit is actually not used by MPC or EMTF
  uint16_t syncErr;
  // 4-bit CSC chamber identifier
  uint16_t cscID;

  // new members in Run-3:

  // In Run-3, CSC trigger data will include the high-multiplicity
  // bits for a chamber. These bits may indicate the observation of
  // "exotic" events. This data member was included in a prototype.
  // Later on, we developed a dedicated object: "CSCShowerDigi"
  uint16_t hmt;
  // 1/4-strip bit set by CCLUT (see DN-19-059)
  bool run3_quart_strip_bit_;
  // 1/8-strip bit set by CCLUT
  bool run3_eighth_strip_bit_;
  // In Run-3, the CLCT digi has 3-bit pattern ID, 0 through 4
  uint16_t run3_pattern_;
  // 4-bit bending value. There will be 16 bending values * 2 (left/right)
  uint16_t run3_slope_;

  /// SIMULATION ONLY ////
  int type_;

  CSCALCTDigi alct_;
  CSCCLCTDigi clct_;
  GEMPadDigi gem1_;
  GEMPadDigi gem2_;

  Version version_;
};

std::ostream& operator<<(std::ostream& o, const CSCCorrelatedLCTDigi& digi);

#endif