1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
#ifndef DataFormats_CSCDigi_CSCCorrelatedLCTDigi_h
#define DataFormats_CSCDigi_CSCCorrelatedLCTDigi_h
/**\class CSCCorrelatedLCTDigi
*
* Digi for Correlated LCT trigger primitives.
*
*
* \author L. Gray, UF
*/
#include <cstdint>
#include <iosfwd>
#include <limits>
#include "DataFormats/CSCDigi/interface/CSCALCTDigi.h"
#include "DataFormats/CSCDigi/interface/CSCCLCTDigi.h"
#include "DataFormats/GEMDigi/interface/GEMPadDigi.h"
class CSCCorrelatedLCTDigi {
public:
enum class Version { Legacy = 0, Run3 };
// for data vs emulator studies
enum LCTBXMask { kBXDataMask = 0x1 };
/// SIMULATION ONLY ////
enum Type {
CLCTALCT, // CLCT-centric
ALCTCLCT, // ALCT-centric
ALCTCLCTGEM, // ALCT-CLCT-1 GEM pad
ALCTCLCT2GEM, // ALCT-CLCT-2 GEM pads in coincidence
ALCT2GEM, // ALCT-2 GEM pads in coincidence
CLCT2GEM, // CLCT-2 GEM pads in coincidence
CLCTONLY, // Missing ALCT
ALCTONLY // Missing CLCT
};
/// Constructors
CSCCorrelatedLCTDigi(const uint16_t trknmb,
const uint16_t valid,
const uint16_t quality,
const uint16_t keywire,
const uint16_t strip,
const uint16_t pattern,
const uint16_t bend,
const uint16_t bx,
const uint16_t mpclink = 0,
const uint16_t bx0 = 0,
const uint16_t syncErr = 0,
const uint16_t cscID = 0,
const Version version = Version::Legacy,
const bool run3_quart_strip_bit = false,
const bool run3_eighth_strip_bit = false,
const uint16_t run3_pattern = 0,
const uint16_t run3_slope = 0,
const int type = ALCTCLCT);
/// default (calls clear())
CSCCorrelatedLCTDigi();
/// clear this LCT
void clear();
/// return track number
uint16_t getTrknmb() const { return trknmb; }
/// return valid pattern bit
bool isValid() const { return valid; }
/// return the Quality
uint16_t getQuality() const { return quality; }
/// return the key wire group. counts from 0.
uint16_t getKeyWG() const { return keywire; }
/// return the key halfstrip from 0,159
uint16_t getStrip(uint16_t n = 2) const;
/// set single quart strip bit
void setQuartStripBit(const bool quartStripBit) { run3_quart_strip_bit_ = quartStripBit; }
/// get single quart strip bit
bool getQuartStripBit() const { return run3_quart_strip_bit_; }
/// set single eighth strip bit
void setEighthStripBit(const bool eighthStripBit) { run3_eighth_strip_bit_ = eighthStripBit; }
/// get single eighth strip bit
bool getEighthStripBit() const { return run3_eighth_strip_bit_; }
/*
Strips are numbered starting from 1 in CMSSW
Half-strips, quarter-strips and eighth-strips are numbered starting from 0
The table below shows the correct numbering
---------------------------------------------------------------------------------
strip | 1 | 2 |
---------------------------------------------------------------------------------
1/2-strip | 0 | 1 | 2 | 3 |
---------------------------------------------------------------------------------
1/4-strip | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---------------------------------------------------------------------------------
1/8-strip | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---------------------------------------------------------------------------------
Note: the CSC geometry also has a strip offset of +/- 0.25 strips. When comparing the
CLCT/LCT position with the true muon position, take the offset into account!
*/
float getFractionalStrip(uint16_t n = 2) const;
/// return the Run-2 pattern ID
uint16_t getPattern() const { return pattern; }
/// return the Run-3 pattern ID
uint16_t getRun3Pattern() const { return run3_pattern_; }
/// return the slope
uint16_t getSlope() const { return run3_slope_; }
/// slope in number of half-strips/layer
/// negative means left-bending
/// positive means right-bending
float getFractionalSlope() const;
/// return left/right bending
/// 0: left-bending (negative delta-strip / delta layer)
/// 1: right-bending (positive delta-strip / delta layer)
uint16_t getBend() const { return bend; }
/// return BX
uint16_t getBX() const { return bx; }
/// return 1-bit BX as in data
uint16_t getBXData() const { return bx & kBXDataMask; }
/// return CLCT pattern number (in use again Feb 2011)
/// This function should not be used for Run-3
uint16_t getCLCTPattern() const;
/// return strip type (obsolete since mid-2008)
uint16_t getStripType() const { return ((pattern & 0x8) >> 3); }
/// return MPC link number, 0 means not sorted, 1-3 give MPC sorting rank
uint16_t getMPCLink() const { return mpclink; }
uint16_t getCSCID() const { return cscID; }
uint16_t getBX0() const { return bx0; }
uint16_t getSyncErr() const { return syncErr; }
/// Run-3 introduces high-multiplicity bits for CSCs.
/// The allocation is different for ME1/1 and non-ME1/1
/// chambers. Both LCTs in a chamber are needed for the complete
/// high-multiplicity trigger information
uint16_t getHMT() const;
/// Set track number (1,2) after sorting LCTs.
void setTrknmb(const uint16_t number) { trknmb = number; }
/// Set mpc link number after MPC sorting
void setMPCLink(const uint16_t& link) { mpclink = link; }
/// Print content of correlated LCT digi
void print() const;
///Comparison
bool operator==(const CSCCorrelatedLCTDigi&) const;
bool operator!=(const CSCCorrelatedLCTDigi& rhs) const { return !(this->operator==(rhs)); }
/// set wiregroup number
void setWireGroup(const uint16_t wiregroup) { keywire = wiregroup; }
/// set quality code
void setQuality(const uint16_t q) { quality = q; }
/// set valid
void setValid(const uint16_t v) { valid = v; }
/// set strip
void setStrip(const uint16_t s) { strip = s; }
/// set pattern
void setPattern(const uint16_t p) { pattern = p; }
/// set Run-3 pattern
void setRun3Pattern(const uint16_t pattern) { run3_pattern_ = pattern; }
/// set the slope
void setSlope(const uint16_t slope) { run3_slope_ = slope; }
/// set bend
void setBend(const uint16_t b) { bend = b; }
/// set bx
void setBX(const uint16_t b) { bx = b; }
/// set bx0
void setBX0(const uint16_t b) { bx0 = b; }
/// set syncErr
void setSyncErr(const uint16_t s) { syncErr = s; }
/// set cscID
void setCSCID(const uint16_t c) { cscID = c; }
/// set high-multiplicity bits
void setHMT(const uint16_t h);
/// Distinguish Run-1/2 from Run-3
bool isRun3() const { return version_ == Version::Run3; }
void setRun3(const bool isRun3);
int getType() const { return type_; }
void setType(int type) { type_ = type; }
void setALCT(const CSCALCTDigi& alct) { alct_ = alct; }
void setCLCT(const CSCCLCTDigi& clct) { clct_ = clct; }
void setGEM1(const GEMPadDigi& gem) { gem1_ = gem; }
void setGEM2(const GEMPadDigi& gem) { gem2_ = gem; }
const CSCALCTDigi& getALCT() const { return alct_; }
const CSCCLCTDigi& getCLCT() const { return clct_; }
const GEMPadDigi& getGEM1() const { return gem1_; }
const GEMPadDigi& getGEM2() const { return gem2_; }
private:
// Note: The Run-3 data format is substantially different than the
// Run-1/2 data format. Some explanation is provided below. For
// more information, please check "DN-20-016".
// Run-1, Run-2 and Run-3 trknmb is either 1 or 2.
uint16_t trknmb;
// In Run-3, the valid will be encoded as a quality
// value "000" or "00".
uint16_t valid;
// In Run-3, the LCT quality number will be 2 or 3 bits
// For ME1/1 chambers: 3 bits
// For non-ME1/1 chambers: 2 bits
uint16_t quality;
// 7-bit key wire
uint16_t keywire;
// actually the 8-bit half-strip number
uint16_t strip;
// Run-1/2 pattern number.
// For Run-3 CLCTs, please use run3_pattern_. For some backward
// compatibility the trigger emulator translates run3_pattern_
// approximately into pattern_ with a lookup table
uint16_t pattern;
// Common definition for left/right bending in Run-1, Run-2 and Run-3.
// 0: right; 1: left
uint16_t bend;
uint16_t bx;
uint16_t mpclink;
uint16_t bx0;
// The synchronization bit is actually not used by MPC or EMTF
uint16_t syncErr;
// 4-bit CSC chamber identifier
uint16_t cscID;
// new members in Run-3:
// In Run-3, CSC trigger data will include the high-multiplicity
// bits for a chamber. These bits may indicate the observation of
// "exotic" events. This data member was included in a prototype.
// Later on, we developed a dedicated object: "CSCShowerDigi"
uint16_t hmt;
// 1/4-strip bit set by CCLUT (see DN-19-059)
bool run3_quart_strip_bit_;
// 1/8-strip bit set by CCLUT
bool run3_eighth_strip_bit_;
// In Run-3, the CLCT digi has 3-bit pattern ID, 0 through 4
uint16_t run3_pattern_;
// 4-bit bending value. There will be 16 bending values * 2 (left/right)
uint16_t run3_slope_;
/// SIMULATION ONLY ////
int type_;
CSCALCTDigi alct_;
CSCCLCTDigi clct_;
GEMPadDigi gem1_;
GEMPadDigi gem2_;
Version version_;
};
std::ostream& operator<<(std::ostream& o, const CSCCorrelatedLCTDigi& digi);
#endif
|