Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
#include "DataFormats/CaloTowers/interface/CaloTower.h"

CaloTower::CaloTower() {
  emE_ = 0;
  hadE_ = 0;
  outerE_ = 0;
  emLvl1_ = 0;
  hadLvl1_ = 0;
}

CaloTower::CaloTower(const CaloTowerDetId& id,
                     double emE,
                     double hadE,
                     double outerE,
                     int ecal_tp,
                     int hcal_tp,
                     const PolarLorentzVector& p4,
                     const GlobalPoint& emPos,
                     const GlobalPoint& hadPos)
    : LeafCandidate(0, p4, Point(0, 0, 0)),
      id_(id),
      emPosition_(emPos),
      hadPosition_(hadPos),
      emE_(emE),
      hadE_(hadE),
      outerE_(outerE),
      emLvl1_(ecal_tp),
      hadLvl1_(hcal_tp) {}

CaloTower::CaloTower(const CaloTowerDetId& id,
                     double emE,
                     double hadE,
                     double outerE,
                     int ecal_tp,
                     int hcal_tp,
                     const LorentzVector& p4,
                     const GlobalPoint& emPos,
                     const GlobalPoint& hadPos)
    : LeafCandidate(0, p4, Point(0, 0, 0)),
      id_(id),
      emPosition_(emPos),
      hadPosition_(hadPos),
      emE_(emE),
      hadE_(hadE),
      outerE_(outerE),
      emLvl1_(ecal_tp),
      hadLvl1_(hcal_tp) {}

CaloTower::CaloTower(CaloTowerDetId id,
                     float emE,
                     float hadE,
                     float outerE,
                     int ecal_tp,
                     int hcal_tp,
                     GlobalVector p3,
                     float iEnergy,
                     bool massless,
                     GlobalPoint emPos,
                     GlobalPoint hadPos)
    : LeafCandidate(0, p3, iEnergy, massless, Point(0, 0, 0)),
      id_(id),
      emPosition_(emPos),
      hadPosition_(hadPos),
      emE_(emE),
      hadE_(hadE),
      outerE_(outerE),
      emLvl1_(ecal_tp),
      hadLvl1_(hcal_tp) {}

CaloTower::CaloTower(CaloTowerDetId id,
                     float emE,
                     float hadE,
                     float outerE,
                     int ecal_tp,
                     int hcal_tp,
                     GlobalVector p3,
                     float iEnergy,
                     float imass,
                     GlobalPoint emPos,
                     GlobalPoint hadPos)
    : LeafCandidate(0, p3, iEnergy, imass, Point(0, 0, 0)),
      id_(id),
      emPosition_(emPos),
      hadPosition_(hadPos),
      emE_(emE),
      hadE_(hadE),
      outerE_(outerE),
      emLvl1_(ecal_tp),
      hadLvl1_(hcal_tp) {}

// recalculated momentum-related quantities wrt user provided vertex Z position

math::PtEtaPhiMLorentzVector CaloTower::hadP4(double vtxZ) const {
  // note: for now we use the same position for HO as for the other detectors

  double hcalTot;
  if (inHO_)
    hcalTot = (energy() - emE_);
  else
    hcalTot = hadE_;

  if (hcalTot > 0) {
    double ctgTheta = (hadPosition_.z() - vtxZ) / hadPosition_.perp();
    double newEta = asinh(ctgTheta);
    double pf = 1.0 / cosh(newEta);

    return PolarLorentzVector(hcalTot * pf, newEta, hadPosition_.phi(), 0.0);
  }

  return math::PtEtaPhiMLorentzVector(0, 0, 0, 0);
}

math::PtEtaPhiMLorentzVector CaloTower::emP4(double vtxZ) const {
  if (emE_ > 0) {
    double ctgTheta = (emPosition_.z() - vtxZ) / emPosition_.perp();
    double newEta = asinh(ctgTheta);
    double pf = 1.0 / cosh(newEta);

    return math::PtEtaPhiMLorentzVector(emE_ * pf, newEta, emPosition_.phi(), 0.0);
  }

  return math::PtEtaPhiMLorentzVector(0, 0, 0, 0);
}

// recalculated momentum-related quantities wrt user provided 3D vertex

math::PtEtaPhiMLorentzVector CaloTower::hadP4(const Point& v) const {
  // note: for now we use the same position for HO as for the other detectors

  double hcalTot;
  if (inHO_)
    hcalTot = (energy() - emE_);
  else
    hcalTot = hadE_;

  if (hcalTot > 0) {
    GlobalPoint p(v.x(), v.y(), v.z());
    math::XYZVector dir = math::XYZVector(hadPosition_ - p);
    return math::PtEtaPhiMLorentzVector(hcalTot * sin(dir.theta()), dir.eta(), dir.phi(), 0.0);
  }

  return math::PtEtaPhiMLorentzVector(0, 0, 0, 0);
}

math::PtEtaPhiMLorentzVector CaloTower::emP4(const Point& v) const {
  if (emE_ > 0) {
    GlobalPoint p(v.x(), v.y(), v.z());
    math::XYZVector dir = math::XYZVector(emPosition_ - p);
    return math::PtEtaPhiMLorentzVector(emE_ * sin(dir.theta()), dir.eta(), dir.phi(), 0.0);
  }

  return math::PtEtaPhiMLorentzVector(0, 0, 0, 0);
}

math::PtEtaPhiMLorentzVector CaloTower::p4(double vtxZ) const {
  if (subdet_ == HcalBarrel || subdet_ == HcalEndcap) {
    return (emP4(vtxZ) + hadP4(vtxZ));
  }
  // em and had energy in HF are defined in a special way
  double ctgTheta =
      (emPosition_.z() - vtxZ) / emPosition_.perp();  // em and had positions in HF are forced to be the same
  double newEta = asinh(ctgTheta);
  double pf = 1.0 / cosh(newEta);
  return math::PtEtaPhiMLorentzVector(p4().energy() * pf, newEta, emPosition_.phi(), 0.0);
}

math::PtEtaPhiMLorentzVector CaloTower::p4(const Point& v) const {
  if (subdet_ == HcalBarrel || subdet_ == HcalEndcap) {
    return emP4(v) + hadP4(v);
  }
  // em and had energy in HF are defined in a special way
  GlobalPoint p(v.x(), v.y(), v.z());
  math::XYZVector dir = math::XYZVector(emPosition_ - p);  // em and had positions in HF are forced to be the same
  return math::PtEtaPhiMLorentzVector(p4().energy() * sin(dir.theta()), dir.eta(), dir.phi(), 0.0);
}

// p4 contribution from HO alone (note: direction is always taken to be the same as used for HB.)

math::PtEtaPhiMLorentzVector CaloTower::p4_HO(const Point& v) const {
  if (!inHO_ || outerE_ < 0)
    return math::PtEtaPhiMLorentzVector(0, 0, 0, 0);

  GlobalPoint p(v.x(), v.y(), v.z());
  math::XYZVector dir = math::XYZVector(hadPosition_ - p);
  return math::PtEtaPhiMLorentzVector(outerE_ * sin(dir.theta()), dir.eta(), dir.phi(), 0.0);
}

math::PtEtaPhiMLorentzVector CaloTower::p4_HO(double vtxZ) const {
  Point p(0, 0, vtxZ);
  return p4_HO(p);
}

math::PtEtaPhiMLorentzVector CaloTower::p4_HO() const {
  if (!inHO_ || outerE_ < 0)
    return math::PtEtaPhiMLorentzVector(0.0, 0.0, 0.0, 0.0);
  return math::PtEtaPhiMLorentzVector(outerE_ * sin(hadPosition_.theta()), hadPosition_.eta(), hadPosition_.phi(), 0.0);
}

void CaloTower::addConstituents(const std::vector<DetId>& ids) {
  constituents_.reserve(constituents_.size() + ids.size());
  constituents_.insert(constituents_.end(), ids.begin(), ids.end());
}

int CaloTower::numCrystals() const {
  if (subdet_ == HcalForward)
    return 0;

  int nC = 0;
  std::vector<DetId>::const_iterator it = constituents_.begin();
  for (; it != constituents_.end(); ++it) {
    if (it->det() == DetId::Ecal)
      ++nC;
  }

  return nC;
}

// Set the CaloTower status word from the number of bad/recovered/problematic
// cells in HCAL and ECAL.

void CaloTower::setCaloTowerStatus(unsigned int numBadHcalChan,
                                   unsigned int numBadEcalChan,
                                   unsigned int numRecHcalChan,
                                   unsigned int numRecEcalChan,
                                   unsigned int numProbHcalChan,
                                   unsigned int numProbEcalChan) {
  twrStatusWord_ = 0x0;

  twrStatusWord_ |= (numBadEcalChan & 0x1F);
  twrStatusWord_ |= ((numRecEcalChan & 0x1F) << 5);
  twrStatusWord_ |= ((numProbEcalChan & 0x1F) << 10);
  twrStatusWord_ |= ((numBadHcalChan & 0x7) << 15);
  twrStatusWord_ |= ((numRecHcalChan & 0x7) << 18);
  twrStatusWord_ |= ((numProbHcalChan & 0x7) << 21);

  return;
}

// energy in the tower by HCAL subdetector
// This is trivia except for tower 16
// needed by JetMET cleanup in AOD.

double CaloTower::energyInHB() const {
  if (inHBHEgap_)
    return hadE_ - outerE_;
  else if (subdet_ == HcalBarrel)
    return hadE_;
  else
    return 0.0;
}

double CaloTower::energyInHE() const {
  if (inHBHEgap_)
    return outerE_;
  else if (subdet_ == HcalEndcap)
    return hadE_;
  else
    return 0.0;
}

double CaloTower::energyInHF() const {
  if (subdet_ == HcalForward)
    return energy();
  else
    return 0.0;
}

// this is actual energy contributed to the tower
// (outerEnergy() returns HO energy regardless if it is used or not)
// Note: rounding error may lead to values not identically equal to zero
// when HO was not used

double CaloTower::energyInHO() const {
  if (inHO_)
    return (energy() - hadE_ - emE_);
  else
    return 0.0;
}

std::ostream& operator<<(std::ostream& s, const CaloTower& ct) {
  return s << ct.id() << ":" << ct.et() << " GeV ET (EM=" << ct.emEt() << " HAD=" << ct.hadEt()
           << " OUTER=" << ct.outerEt() << ") (" << ct.eta() << "," << ct.phi() << ")";
}