1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
#ifndef Candidate_Candidate_h
#define Candidate_Candidate_h
/** \class reco::Candidate
*
* abstract interface for physics objects
*
* \author Luca Lista (INFN), Benedikt Hegner (CERN)
*
*
*/
#include "DataFormats/Candidate/interface/component.h"
#include "DataFormats/Candidate/interface/const_iterator.h"
#include "DataFormats/Math/interface/Error.h"
#include "DataFormats/Math/interface/Point3D.h"
#include "DataFormats/Math/interface/Vector3D.h"
#include "DataFormats/Math/interface/LorentzVector.h"
#include "DataFormats/Candidate/interface/Particle.h"
#include "DataFormats/Common/interface/CMS_CLASS_VERSION.h"
class OverlapChecker;
namespace reco {
class Track;
class Candidate {
public:
typedef size_t size_type;
typedef candidate::const_iterator const_iterator;
typedef candidate::iterator iterator;
/// electric charge type
typedef int Charge;
/// Lorentz vector
typedef math::XYZTLorentzVector LorentzVector;
/// Lorentz vector
typedef math::PtEtaPhiMLorentzVector PolarLorentzVector;
/// point in the space
typedef math::XYZPoint Point;
/// point in the space
typedef math::XYZVector Vector;
enum { dimension = 3 };
/// covariance error matrix (3x3)
typedef math::Error<dimension>::type CovarianceMatrix;
/// matix size
enum { size = dimension * (dimension + 1) / 2 };
/// index type
typedef unsigned int index;
/// default constructor
Candidate() {}
/// destructor
virtual ~Candidate();
/// electric charge
virtual int charge() const = 0;
/// set electric charge
virtual void setCharge(Charge q) = 0;
/// electric charge
virtual int threeCharge() const = 0;
/// set electric charge
virtual void setThreeCharge(Charge qx3) = 0;
/// four-momentum Lorentz vector
virtual const LorentzVector& p4() const = 0;
/// four-momentum Lorentz vector
virtual const PolarLorentzVector& polarP4() const = 0;
/// spatial momentum vector
virtual Vector momentum() const = 0;
/// boost vector to boost a Lorentz vector
/// to the particle center of mass system
virtual Vector boostToCM() const = 0;
/// magnitude of momentum vector
virtual double p() const = 0;
/// energy
virtual double energy() const = 0;
/// transverse energy
virtual double et() const = 0;
/// transverse energy squared (use this for cut!)
virtual double et2() const = 0;
/// mass
virtual double mass() const = 0;
/// mass squared
virtual double massSqr() const = 0;
/// transverse mass
virtual double mt() const = 0;
/// transverse mass squared
virtual double mtSqr() const = 0;
/// x coordinate of momentum vector
virtual double px() const = 0;
/// y coordinate of momentum vector
virtual double py() const = 0;
/// z coordinate of momentum vector
virtual double pz() const = 0;
/// transverse momentum
virtual double pt() const = 0;
/// momentum azimuthal angle
virtual double phi() const = 0;
/// momentum polar angle
virtual double theta() const = 0;
/// momentum pseudorapidity
virtual double eta() const = 0;
/// rapidity
virtual double rapidity() const = 0;
/// rapidity
virtual double y() const = 0;
/// set 4-momentum
virtual void setP4(const LorentzVector& p4) = 0;
/// set 4-momentum
virtual void setP4(const PolarLorentzVector& p4) = 0;
/// set particle mass
virtual void setMass(double m) = 0;
virtual void setPz(double pz) = 0;
/// vertex position
virtual const Point& vertex() const = 0;
/// x coordinate of vertex position
virtual double vx() const = 0;
/// y coordinate of vertex position
virtual double vy() const = 0;
/// z coordinate of vertex position
virtual double vz() const = 0;
/// set vertex
virtual void setVertex(const Point& vertex) = 0;
/// PDG identifier
virtual int pdgId() const = 0;
// set PDG identifier
virtual void setPdgId(int pdgId) = 0;
/// status word
virtual int status() const = 0;
/// set status word
virtual void setStatus(int status) = 0;
/// set long lived flag
virtual void setLongLived() = 0;
/// is long lived?
virtual bool longLived() const = 0;
/// set mass constraint flag
virtual void setMassConstraint() = 0;
/// do mass constraint?
virtual bool massConstraint() const = 0;
/// returns a clone of the Candidate object
virtual Candidate* clone() const = 0;
/// first daughter const_iterator
const_iterator begin() const { return const_iterator(this, 0); }
/// last daughter const_iterator
const_iterator end() const { return const_iterator(this, numberOfDaughters()); }
/// first daughter iterator
iterator begin() { return iterator(this, 0); }
/// last daughter iterator
iterator end() { return iterator(this, numberOfDaughters()); }
/// number of daughters
virtual size_type numberOfDaughters() const = 0;
/// return daughter at a given position, i = 0, ... numberOfDaughters() - 1 (read only mode)
virtual const Candidate* daughter(size_type i) const = 0;
/// return daughter at a given position, i = 0, ... numberOfDaughters() - 1
virtual Candidate* daughter(size_type i) = 0;
/// return daughter with a specified role name
virtual Candidate* daughter(const std::string& s) = 0;
/// return daughter with a specified role name
virtual const Candidate* daughter(const std::string& s) const = 0;
/// number of mothers (zero or one in most of but not all the cases)
virtual size_type numberOfMothers() const = 0;
/// return pointer to mother
virtual const Candidate* mother(size_type i = 0) const = 0;
/// return the number of source Candidates
/// ( the candidates used to construct this Candidate)
virtual size_t numberOfSourceCandidatePtrs() const = 0;
/// return a Ptr to one of the source Candidates
/// ( the candidates used to construct this Candidate)
virtual CandidatePtr sourceCandidatePtr(size_type i) const { return CandidatePtr(); }
/// \brief Set the ptr to the source Candidate.
///
/// necessary, to allow a parallel treatment of all candidates
/// in PF2PAT. Does nothing for most Candidate classes, including
/// CompositePtrCandidates, where the source information is in fact
/// the collection of ptrs to daughters. For non-Composite Candidates,
/// this function can be used to set the ptr to the source of the
/// Candidate, which will allow to keep track
/// of the reconstruction history.
virtual void setSourceCandidatePtr(const CandidatePtr& ptr) {}
/// chi-squares
virtual double vertexChi2() const = 0;
/** Number of degrees of freedom
* Meant to be Double32_t for soft-assignment fitters:
* tracks may contribute to the vertex with fractional weights.
* The ndof is then = to the sum of the track weights.
* see e.g. CMS NOTE-2006/032, CMS NOTE-2004/002
*/
virtual double vertexNdof() const = 0;
/// chi-squared divided by n.d.o.f.
virtual double vertexNormalizedChi2() const = 0;
/// (i, j)-th element of error matrix, i, j = 0, ... 2
virtual double vertexCovariance(int i, int j) const = 0;
/// fill SMatrix
virtual CovarianceMatrix vertexCovariance() const {
CovarianceMatrix m;
fillVertexCovariance(m);
return m;
} //TODO
virtual void fillVertexCovariance(CovarianceMatrix& v) const = 0;
/// returns true if this candidate has a reference to a master clone.
/// This only happens if the concrete Candidate type is ShallowCloneCandidate
virtual bool hasMasterClone() const = 0;
/// returns ptr to master clone, if existing.
/// Throws an exception unless the concrete Candidate type is ShallowCloneCandidate
virtual const CandidateBaseRef& masterClone() const = 0;
/// returns true if this candidate has a ptr to a master clone.
/// This only happens if the concrete Candidate type is ShallowClonePtrCandidate
virtual bool hasMasterClonePtr() const = 0;
/// returns ptr to master clone, if existing.
/// Throws an exception unless the concrete Candidate type is ShallowClonePtrCandidate
virtual const CandidatePtr& masterClonePtr() const = 0;
/// cast master clone reference to a concrete type
template <typename Ref>
Ref masterRef() const {
return masterClone().template castTo<Ref>();
}
/// get a component
template <typename T>
T get() const {
if (hasMasterClone())
return masterClone()->get<T>();
else
return reco::get<T>(*this);
}
/// get a component
template <typename T, typename Tag>
T get() const {
if (hasMasterClone())
return masterClone()->get<T, Tag>();
else
return reco::get<T, Tag>(*this);
}
/// get a component
template <typename T>
T get(size_type i) const {
if (hasMasterClone())
return masterClone()->get<T>(i);
else
return reco::get<T>(*this, i);
}
/// get a component
template <typename T, typename Tag>
T get(size_type i) const {
if (hasMasterClone())
return masterClone()->get<T, Tag>(i);
else
return reco::get<T, Tag>(*this, i);
}
/// number of components
template <typename T>
size_type numberOf() const {
if (hasMasterClone())
return masterClone()->numberOf<T>();
else
return reco::numberOf<T>(*this);
}
/// number of components
template <typename T, typename Tag>
size_type numberOf() const {
if (hasMasterClone())
return masterClone()->numberOf<T, Tag>();
else
return reco::numberOf<T, Tag>(*this);
}
virtual const Track* bestTrack() const { return nullptr; }
/// uncertainty on dz
virtual float dzError() const {
return 0;
} // { const Track * tr=bestTrack(); if(tr!=nullptr) return tr->dzError(); else return 0; }
/// uncertainty on dxy
virtual float dxyError() const {
return 0;
} // { const Track * tr=bestTrack(); if(tr!=nullptr) return tr->dxyError(); else return 0; }
virtual bool isElectron() const = 0;
virtual bool isMuon() const = 0;
virtual bool isStandAloneMuon() const = 0;
virtual bool isGlobalMuon() const = 0;
virtual bool isTrackerMuon() const = 0;
virtual bool isCaloMuon() const = 0;
virtual bool isPhoton() const = 0;
virtual bool isConvertedPhoton() const = 0;
virtual bool isJet() const = 0;
protected:
/// check overlap with another Candidate
virtual bool overlap(const Candidate&) const = 0;
template <typename, typename, typename>
friend struct component;
friend class ::OverlapChecker;
friend class ShallowCloneCandidate;
friend class ShallowClonePtrCandidate;
};
namespace candidate {
const_iterator::reference const_iterator::operator*() const { return *(me->daughter(i)); }
iterator::reference iterator::operator*() const { return *(me->daughter(i)); }
} // namespace candidate
} // namespace reco
#endif
|