1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
#ifndef DataFormats_Common_AssociationMap_h
#define DataFormats_Common_AssociationMap_h
/** \class edm::AssociationMap
*
* one-to-many or one-to-one associative map using EDM references
*
* \author Luca Lista, INFN
*
* In general, this class is intuitive, but two special cases
* deserves some extra discussion. These are somewhat unusual
* corner cases, but sometimes actually have arisen.
*
* First, one can initialize the AssociationMap by passing in
* a Handle to a collection as an argument to the constructor.
* Usually it is a good way to initialize it. But this will
* fail in the case where a collection template parameter to
* Tag (either CKey or CVal) is a View and the underlying collection
* read into the View is a RefVector, PtrVector, or vector(Ptr).
* AssociationMap will behave improperly if the constructor is passed
* a Handle<View<C> >. In this case, one should initialize with
* a EDProductGetter const* or construct a RefToBaseProd whose
* ProductID is associated with the underlying container, not
* the RefVector, PtrVector, or vector<Ptr>.
*
* AssociationMap is designed to support cases where all the Key
* Ref's point into one container and all the Val Ref's point into
* one other container. For example, if one read a vector<Ptr> into
* a View and the Ptr's pointed into different containers
* and you tried to use these as elements of CVal, then
* AssociationMap will not work.
*/
#include "DataFormats/Common/interface/CMS_CLASS_VERSION.h"
#include "DataFormats/Common/interface/RefVector.h"
#include "DataFormats/Common/interface/OneToValue.h"
#include "DataFormats/Common/interface/OneToOne.h"
#include "DataFormats/Common/interface/OneToMany.h"
#include "DataFormats/Common/interface/OneToManyWithQuality.h"
#include <utility>
#include "oneapi/tbb/concurrent_unordered_map.h"
namespace edm {
class EDProductGetter;
template <typename Tag>
class AssociationMap {
/// This is the second part of the value part of
/// the items stored in the transient map
typedef typename Tag::val_type internal_val_type;
public:
/// self type
typedef AssociationMap<Tag> self;
/// tag/association type
typedef Tag tag_type;
/// index type
typedef typename Tag::index_type index_type;
/// insert key type
typedef typename Tag::key_type key_type;
/// insert data type
typedef typename Tag::data_type data_type;
/// Holds the RefProd or RefToBaseProd of 1 or 2 collections
typedef typename Tag::ref_type ref_type;
/// map type
typedef typename Tag::map_type map_type;
/// size type
typedef typename map_type::size_type size_type;
/// type returned by dereferenced iterator, also can be inserted
typedef helpers::KeyVal<key_type, internal_val_type> value_type;
/// type return by operator[]
typedef typename value_type::value_type result_type;
/// transient map type
typedef typename oneapi::tbb::concurrent_unordered_map<index_type, value_type> internal_transient_map_type;
/// const iterator
struct const_iterator {
typedef typename self::value_type value_type;
typedef ptrdiff_t difference_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef typename map_type::const_iterator::iterator_category iterator_category;
const_iterator() : map_(nullptr) {}
const_iterator(const self* map, typename map_type::const_iterator mi) : map_(map), i(mi) {}
const_iterator& operator++() {
++i;
return *this;
}
const_iterator operator++(int) {
const_iterator ci = *this;
++i;
return ci;
}
const_iterator& operator--() {
--i;
return *this;
}
const_iterator operator--(int) {
const_iterator ci = *this;
--i;
return ci;
}
bool operator==(const const_iterator& ci) const { return i == ci.i; }
bool operator!=(const const_iterator& ci) const { return i != ci.i; }
const value_type& operator*() const { return map_->get(i->first); }
const value_type* operator->() const { return &operator*(); }
private:
const self* map_;
typename map_type::const_iterator i;
};
/// default constructor
AssociationMap() {}
// You will see better performance if you use other constructors.
// Use this when the arguments the other constructors require are
// not easily available.
explicit AssociationMap(EDProductGetter const* getter) : ref_(getter) {}
// It is rare for this to be useful
explicit AssociationMap(const ref_type& ref) : ref_(ref) {}
// In most cases this is the best constructor to use.
// This constructor should be passed 2 arguments, except in the
// case where the template parameter is OneToValue where it should
// be passed 1 argument. In most cases, the arguments will be valid
// Handle's to the containers. Internally, the AssociationMap holds
// a RefProd for each container. An argument passed here is forwarded
// to a RefProd constructor. Alternatively, you can pass in
// a RefProd or anything else a RefProd can be constructed from.
// The exceptional case is when the container template argument
// is a View (For your peace of mind, I suggest you stop reading
// this comment here if you are not dealing with the View case).
// Usually one would not pass a Handle argument in the View
// case. Then internally AssociationMap holds a RefToBaseProd
// for each container instead of a RefProd and one would pass a
// RefToBaseProd as an argument in that case. Also see the comments
// at the top of this file that are relevant to the View case.
// In the View case, the code would sometimes look similar to
// the following:
//
// typedef edm::AssociationMap<edm::OneToOne<edm::View<X>, edm::View<Y> > > AssocOneToOneView;
// edm::Handle<edm::View<X> > inputView1;
// event.getByToken(inputToken1V_, inputView1);
// edm::Handle<edm::View<Y> > inputView2;
// event.getByToken(inputToken2V_, inputView2);
// // If you are certain the Views are not empty!
// std::unique_ptr<AssocOneToOneView> assoc8(new AssocOneToOneView(
// edm::makeRefToBaseProdFrom(inputView1->refAt(0), event),
// edm::makeRefToBaseProdFrom(inputView2->refAt(0), event)
// ));
template <typename... Args>
AssociationMap(Args... args) : ref_(std::forward<Args>(args)...) {}
/// clear map
void clear() {
map_.clear();
transientMap_.clear();
}
/// map size
size_type size() const { return map_.size(); }
/// return true if empty
bool empty() const { return map_.empty(); }
/// insert an association
void insert(const key_type& k, const data_type& v) { Tag::insert(ref_, map_, k, v); }
void insert(const value_type& kv) { Tag::insert(ref_, map_, kv.key, kv.val); }
/// first iterator over the map (read only)
const_iterator begin() const { return const_iterator(this, map_.begin()); }
/// last iterator over the map (read only)
const_iterator end() const { return const_iterator(this, map_.end()); }
/// find element with specified reference key
const_iterator find(const key_type& k) const {
if (ref_.key.id() != k.id())
return end();
return find(k.key());
}
/// erase the element whose key is k
size_type erase(const key_type& k) {
index_type i = k.key();
transientMap_.unsafe_erase(i);
return map_.erase(i);
}
/// find element with specified reference key
const result_type& operator[](const key_type& k) const {
helpers::checkRef(ref_.key, k);
return get(k.key()).val;
}
template <typename K>
const result_type& operator[](const K& k) const {
helpers::checkRef(ref_.key, k);
return get(k.key()).val;
}
/// number of associations to a key
size_type numberOfAssociations(const key_type& k) const {
if (ref_.key.id() != k.id())
return 0;
typename map_type::const_iterator f = map_.find(k.key());
if (f == map_.end())
return 0;
return Tag::size(f->second);
}
template <typename K>
size_type numberOfAssociations(const K& k) const {
if (ref_.key.id() != k.id())
return 0;
typename map_type::const_iterator f = map_.find(k.key());
if (f == map_.end())
return 0;
return Tag::size(f->second);
}
/// return ref-prod structure
const ref_type& refProd() const { return ref_; }
/// fill and return a transient map
/// required for ROOT interactive usage
typename Tag::transient_map_type map() { return Tag::transientMap(ref_, map_); }
/// fill and return a transient key vector
/// required for ROOT interactive usage
typename Tag::transient_key_vector keys() { return Tag::transientKeyVector(ref_, map_); }
/// fill and return a transient key vector
/// required for ROOT interactive usage
typename Tag::transient_val_vector values() { return Tag::transientValVector(ref_, map_); }
/// post insert action
void post_insert() { Tag::sort(map_); }
// Find should be private! However, generated reflex dictionaries do not compile
// if Find is private.
/// find helper
struct Find {
using first_argument_type = const self&;
using second_argument_type = size_type;
using result_type = const value_type*;
const result_type operator()(first_argument_type c, second_argument_type i) { return &(*c.find(i)); }
};
//Used by ROOT storage
CMS_CLASS_VERSION(10)
private:
/// reference set
ref_type ref_;
/// index map
map_type map_;
/// transient reference map
mutable internal_transient_map_type transientMap_;
/// find element with index i
const_iterator find(size_type i) const {
typename map_type::const_iterator f = map_.find(i);
if (f == map_.end())
return end();
return const_iterator(this, f);
}
/// return value_typeelement with key i
const value_type& get(size_type i) const {
typename internal_transient_map_type::const_iterator tf = transientMap_.find(i);
if (tf == transientMap_.end()) {
typename map_type::const_iterator f = map_.find(i);
if (f == map_.end())
Exception::throwThis(edm::errors::InvalidReference, "can't find reference in AssociationMap at position ", i);
value_type v(key_type(ref_.key, i), Tag::val(ref_, f->second));
std::pair<typename internal_transient_map_type::const_iterator, bool> ins =
transientMap_.insert(std::make_pair(i, v));
return ins.first->second;
} else {
return tf->second;
}
}
friend struct const_iterator;
friend struct Find;
friend struct refhelper::FindTrait<self, value_type>;
template <typename, typename, typename>
friend class OneToValue;
template <typename, typename, typename>
friend class OneToOne;
template <typename, typename, typename>
friend class OneToMany;
template <typename, typename, typename, typename>
friend class OneToManyWithQuality;
};
namespace refhelper {
template <typename Tag>
struct FindTrait<AssociationMap<Tag>, typename AssociationMap<Tag>::value_type> {
typedef typename AssociationMap<Tag>::Find value;
};
} // namespace refhelper
} // namespace edm
#endif
|