StdArray

StdArrayTrait

StdArrayTrait

array_type

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
#ifndef DataFormats_Common_interface_StdArray_h
#define DataFormats_Common_interface_StdArray_h

#include <array>
#include <cstddef>
#include <iostream>
#include <iterator>

#include "DataFormats/Common/interface/CMS_CLASS_VERSION.h"

namespace edm {

  // Due to a ROOT limitation an std::array cannot be serialised to a ROOT file.
  // See https://github.com/root-project/root/issues/12007 for a discussion on the issue.
  //
  // This class reimplements the full std::array<T,N> interface, using a regular
  // Reflex dictionary for the ROOT serialisation.
  // To be more GPU-friendly, all methods are constexpr, and out-of-bound data access
  // aborts instead of throwing an exception.
  //
  // Note: dictonaries for edm::StdArray<T,N> where T is a standard C/C++ type
  // should be declared in DataFormats/Common/src/classed_def.xml.

  namespace detail {
    template <typename T, std::size_t N>
    class StdArrayTrait {
    public:
      using array_type = T[N];
    };

    template <typename T>
    class StdArrayTrait<T, 0> {
    public:
      struct array_type {};
    };
  }  // namespace detail

  template <typename T, std::size_t N>
  class StdArray {
  public:
    // Member types

    using value_type = T;
    using size_type = std::size_t;
    using difference_type = std::ptrdiff_t;
    using reference = value_type&;
    using const_reference = value_type const&;
    using pointer = value_type*;
    using const_pointer = const value_type*;
    using iterator = pointer;
    using const_iterator = const_pointer;
    using reverse_iterator = std::reverse_iterator<iterator>;
    using const_reverse_iterator = std::reverse_iterator<const_iterator>;

    // Interoperability with std::array

    // copy assignment from an std::array
    constexpr StdArray& operator=(std::array<T, N> const& init) {
      for (size_type i = 0; i < N; ++i) {
        data_[i] = init[i];
      }
      return *this;
    }

    // move assignment from an std::array
    constexpr StdArray& operator=(std::array<T, N>&& init) {
      for (size_type i = 0; i < N; ++i) {
        data_[i] = std::move(init[i]);
      }
      return *this;
    }

    // cast operator to an std::array
    constexpr operator std::array<T, N>() const {
      std::array<T, N> copy;
      for (size_type i = 0; i < N; ++i) {
        copy[i] = data_[i];
      }
      return copy;
    }

    // Element access

    // Returns a reference to the element at specified location pos, with bounds checking.
    // If pos is not within the range of the container, the program aborts.
    constexpr reference at(size_type pos) {
      if (pos >= N)
        abort();
      return data_[pos];
    }
    constexpr const_reference at(size_type pos) const {
      if (pos >= N)
        abort();
      return data_[pos];
    }

    // Returns a reference to the element at specified location pos. No bounds checking is performed.
    constexpr reference operator[](size_type pos) { return data_[pos]; }
    constexpr const_reference operator[](size_type pos) const { return data_[pos]; }

    // Returns a reference to the first element in the container.
    // Calling front on an empty container causes the program to abort.
    constexpr reference front() {
      if constexpr (N == 0)
        abort();
      return data_[0];
    }
    constexpr const_reference front() const {
      if constexpr (N == 0)
        abort();
      return data_[0];
    }

    // Returns a reference to the last element in the container.
    // Calling back on an empty container causes the program to abort.
    constexpr reference back() {
      if constexpr (N == 0)
        abort();
      return data_[N - 1];
    }
    constexpr const_reference back() const {
      if constexpr (N == 0)
        abort();
      return data_[N - 1];
    }

    // Returns pointer to the underlying array serving as element storage.
    // The pointer is such that range [data(), data() + size()) is always a valid range,
    // even if the container is empty (data() is not dereferenceable in that case).
    constexpr pointer data() noexcept {
      if constexpr (N != 0)
        return data_;
      else
        return nullptr;
    }
    constexpr const_pointer data() const noexcept {
      if constexpr (N != 0)
        return data_;
      else
        return nullptr;
    }

    // Iterators

    // Returns an iterator to the first element of the array.
    // If the array is empty, the returned iterator will be equal to end().
    constexpr iterator begin() noexcept {
      if constexpr (N != 0)
        return data_;
      else
        return nullptr;
    }
    constexpr const_iterator begin() const noexcept {
      if constexpr (N != 0)
        return data_;
      else
        return nullptr;
    }
    constexpr const_iterator cbegin() const noexcept {
      if constexpr (N != 0)
        return data_;
      else
        return nullptr;
    }

    // Returns an iterator to the element following the last element of the array.
    // This element acts as a placeholder; attempting to access it results in undefined behavior.
    constexpr iterator end() noexcept {
      if constexpr (N != 0)
        return data_ + N;
      else
        return nullptr;
    }
    constexpr const_iterator end() const noexcept {
      if constexpr (N != 0)
        return data_ + N;
      else
        return nullptr;
    }
    constexpr const_iterator cend() const noexcept {
      if constexpr (N != 0)
        return data_ + N;
      else
        return nullptr;
    }

    // Returns a reverse iterator to the first element of the reversed array.
    // It corresponds to the last element of the non-reversed array. If the array is empty, the returned iterator is equal to rend().
    constexpr reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
    constexpr const_reverse_iterator rbegin() const noexcept { return const_reverse_iterator(end()); }
    constexpr const_reverse_iterator crbegin() const noexcept { return const_reverse_iterator(end()); }

    // Returns a reverse iterator to the element following the last element of the reversed array.
    // It corresponds to the element preceding the first element of the non-reversed array. This element acts as a placeholder, attempting to access it results in undefined behavior.
    constexpr reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
    constexpr const_reverse_iterator rend() const noexcept { return const_reverse_iterator(begin()); }
    constexpr const_reverse_iterator crend() const noexcept { return const_reverse_iterator(begin()); }

    // Capacity

    // Checks if the container has no elements, i.e. whether begin() == end().
    constexpr bool empty() const noexcept { return N == 0; }

    // Returns the number of elements in the container, i.e. std::distance(begin(), end()).
    constexpr size_type size() const noexcept { return N; }

    // Returns the maximum number of elements the container is able to hold due to system or library implementation limitations, i.e. std::distance(begin(), end()) for the largest container.
    constexpr size_type max_size() const noexcept { return N; }

    // Operations

    // Assigns the value to all elements in the container.
    constexpr void fill(const T& value) {
      for (size_type i = 0; i < N; ++i)
        data_[i] = N;
    }

    // Exchanges the contents of the container with those of other. Does not cause iterators and references to associate with the other container.
    constexpr void swap(StdArray& other) noexcept(std::is_nothrow_swappable_v<T>) {
      if (&other == this)
        return;
      for (size_type i = 0; i < N; ++i)
        std::swap(data_[i], other[i]);
    }

    // Data members

    // Use a public data member to allow aggregate initialisation
    typename detail::StdArrayTrait<T, N>::array_type data_;

    // ROOT dictionary support for templated classes
    CMS_CLASS_VERSION(3);
  };

  // comparison operator; T and U must be inequality comparable
  template <class T, class U, std::size_t N>
  constexpr bool operator==(StdArray<T, N> const& lhs, StdArray<U, N> const& rhs) {
    for (std::size_t i = 0; i < N; ++i) {
      if (lhs[i] != rhs[i])
        return false;
    }
    return true;
  }

  // output stream operator
  template <typename T, std::size_t N>
  std::ostream& operator<<(std::ostream& out, edm::StdArray<T, N> const& array) {
    out << "{";
    if constexpr (N > 0) {
      out << " " << array[0];
    }
    for (std::size_t i = 1; i < N; ++i)
      out << ", " << array[i];
    out << " }";
    return out;
  }

}  // namespace edm

#endif  // DataFormats_Common_interface_StdArray_h