1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
/** \file
*
* \author Stefano Lacaprara - INFN Legnaro <stefano.lacaprara@pd.infn.it>
* \author Riccardo Bellan - INFN TO <riccardo.bellan@cern.ch>
*/
/* This Class Header */
#include "DataFormats/DTRecHit/interface/DTRecSegment4D.h"
/* Collaborating Class Header */
#include "DataFormats/MuonDetId/interface/DTChamberId.h"
#include "FWCore/Utilities/interface/Exception.h"
/* C++ Headers */
DTRecSegment4D::DTRecSegment4D(const DTChamberRecSegment2D& phiSeg,
const DTSLRecSegment2D& zedSeg,
const LocalPoint& posZInCh,
const LocalVector& dirZInCh)
: RecSegment(phiSeg.chamberId()), theProjection(full), thePhiSeg(phiSeg), theZedSeg(zedSeg), theDimension(4) {
// Check consistency of 2 sub-segments
if (DTChamberId(phiSeg.geographicalId().rawId()) != DTChamberId(zedSeg.geographicalId().rawId()))
throw cms::Exception("DTRecSegment4D")
<< "the z Segment and the phi segment have different chamber id" << std::endl;
// The position of 2D segments are defined in the SL frame: I must first
// extrapolate that position at the Chamber reference plane
LocalPoint posZAt0 = posZInCh + dirZInCh * (-posZInCh.z()) / cos(dirZInCh.theta());
thePosition = LocalPoint(phiSeg.localPosition().x(), posZAt0.y(), 0.);
LocalVector dirPhiInCh = phiSeg.localDirection();
// given the actual definition of chamber refFrame, (with z poiniting to IP),
// the zed component of direction is negative.
theDirection = LocalVector(dirPhiInCh.x() / fabs(dirPhiInCh.z()), dirZInCh.y() / fabs(dirZInCh.z()), -1.);
theDirection = theDirection.unit();
// set cov matrix
theCovMatrix = AlgebraicSymMatrix(4);
theCovMatrix[0][0] = phiSeg.covMatrix()[0][0]; //sigma (dx/dz)
theCovMatrix[0][2] = phiSeg.covMatrix()[0][1]; //cov(dx/dz,x)
theCovMatrix[2][2] = phiSeg.covMatrix()[1][1]; //sigma (x)
setCovMatrixForZed(posZInCh);
}
DTRecSegment4D::DTRecSegment4D(const DTChamberRecSegment2D& phiSeg)
: RecSegment(phiSeg.chamberId()),
theProjection(phi),
thePhiSeg(phiSeg),
theZedSeg(DTSLRecSegment2D()),
theDimension(2) {
thePosition = thePhiSeg.localPosition();
theDirection = thePhiSeg.localDirection();
// set cov matrix
theCovMatrix = AlgebraicSymMatrix(4);
theCovMatrix[0][0] = phiSeg.covMatrix()[0][0]; //sigma (dx/dz)
theCovMatrix[0][2] = phiSeg.covMatrix()[0][1]; //cov(dx/dz,x)
theCovMatrix[2][2] = phiSeg.covMatrix()[1][1]; //sigma (x)
}
DTRecSegment4D::DTRecSegment4D(const DTSLRecSegment2D& zedSeg, const LocalPoint& posZInCh, const LocalVector& dirZInCh)
: RecSegment(zedSeg.superLayerId().chamberId()),
theProjection(Z),
thePhiSeg(DTChamberRecSegment2D()),
theZedSeg(zedSeg),
theDimension(2) {
LocalPoint posZAt0 = posZInCh + dirZInCh * (-posZInCh.z() / cos(dirZInCh.theta()));
thePosition = posZAt0;
theDirection = dirZInCh;
// set cov matrix
theCovMatrix = AlgebraicSymMatrix(4);
setCovMatrixForZed(posZInCh);
}
DTRecSegment4D::~DTRecSegment4D() {}
AlgebraicVector DTRecSegment4D::parameters() const {
if (dimension() == 4) {
// (dx/dz,dy/dz,x,y)
AlgebraicVector result(4);
result[2] = thePosition.x();
result[3] = thePosition.y();
result[0] = theDirection.x() / theDirection.z();
result[1] = theDirection.y() / theDirection.z();
return result;
}
AlgebraicVector result(2);
if (theProjection == phi) {
// (dx/dz,x)
result[1] = thePosition.x();
result[0] = theDirection.x() / theDirection.z();
} else if (theProjection == Z) {
// (dy/dz,y) (note we are in the chamber r.f.)
result[1] = thePosition.y();
result[0] = theDirection.y() / theDirection.z();
}
return result;
}
AlgebraicSymMatrix DTRecSegment4D::parametersError() const {
if (dimension() == 4) {
return theCovMatrix;
}
AlgebraicSymMatrix result(2);
if (theProjection == phi) {
result[0][0] = theCovMatrix[0][0]; //S(dx/dz)
result[0][1] = theCovMatrix[0][2]; //Cov(dx/dz,x)
result[1][1] = theCovMatrix[2][2]; //S(x)
} else if (theProjection == Z) {
result[0][0] = theCovMatrix[1][1]; //S(dy/dz)
result[0][1] = theCovMatrix[1][3]; //Cov(dy/dz,y)
result[1][1] = theCovMatrix[3][3]; //S(y)
}
return result;
}
//These methods are only used to initialize the const static values
// used by projectionMatrix().
static AlgebraicMatrix initThe4DProjectionMatrix() {
AlgebraicMatrix the4DProjectionMatrix(4, 5, 0);
the4DProjectionMatrix[0][1] = 1;
the4DProjectionMatrix[1][2] = 1;
the4DProjectionMatrix[2][3] = 1;
the4DProjectionMatrix[3][4] = 1;
return the4DProjectionMatrix;
}
static const AlgebraicMatrix the4DProjectionMatrix{initThe4DProjectionMatrix()};
static AlgebraicMatrix initThe2DPhiProjMatrix() {
AlgebraicMatrix the2DPhiProjMatrix(2, 5, 0);
the2DPhiProjMatrix[0][1] = 1;
the2DPhiProjMatrix[1][3] = 1;
return the2DPhiProjMatrix;
}
static const AlgebraicMatrix the2DPhiProjMatrix{initThe2DPhiProjMatrix()};
static AlgebraicMatrix initThe2DZProjMatrix() {
AlgebraicMatrix the2DZProjMatrix(2, 5, 0);
the2DZProjMatrix[0][2] = 1;
the2DZProjMatrix[1][4] = 1;
return the2DZProjMatrix;
}
static const AlgebraicMatrix the2DZProjMatrix{initThe2DZProjMatrix()};
AlgebraicMatrix DTRecSegment4D::projectionMatrix() const {
if (dimension() == 4) {
return the4DProjectionMatrix;
} else if (theProjection == phi) {
return the2DPhiProjMatrix;
} else if (theProjection == Z) {
return the2DZProjMatrix;
} else {
return AlgebraicMatrix();
}
}
LocalError DTRecSegment4D::localPositionError() const {
return LocalError(theCovMatrix[2][2], theCovMatrix[2][3], theCovMatrix[3][3]);
}
LocalError DTRecSegment4D::localDirectionError() const {
return LocalError(theCovMatrix[0][0], theCovMatrix[0][1], theCovMatrix[1][1]);
}
double DTRecSegment4D::chi2() const {
double result = 0;
if (hasPhi())
result += thePhiSeg.chi2();
if (hasZed())
result += theZedSeg.chi2();
return result;
}
int DTRecSegment4D::degreesOfFreedom() const {
int result = 0;
if (hasPhi())
result += thePhiSeg.degreesOfFreedom();
if (hasZed())
result += theZedSeg.degreesOfFreedom();
return result;
}
void DTRecSegment4D::setCovMatrixForZed(const LocalPoint& posZInCh) {
// Warning!!! the covariance matrix for Theta SL segment is defined in the SL
// reference frame, here that in the Chamber ref frame must be used.
// For direction, no problem, but the position is extrapolated, so we must
// propagate the error properly.
// many thanks to Paolo Ronchese for the help in deriving the formulas!
// y=m*z+q in SL frame
// y=m'*z+q' in CH frame
// var(m') = var(m)
theCovMatrix[1][1] = theZedSeg.parametersError()[0][0]; //sigma (dy/dz)
// cov(m',q') = DeltaZ*Var(m) + Cov(m,q)
theCovMatrix[1][3] =
posZInCh.z() * theZedSeg.parametersError()[0][0] + theZedSeg.parametersError()[0][1]; //cov(dy/dz,y)
// Var(q') = DeltaZ^2*Var(m) + Var(q) + 2*DeltaZ*Cov(m,q)
// cout << "Var(q') = DeltaZ^2*Var(m) + Var(q) + 2*DeltaZ*Cov(m,q)" << endl;
// cout << "Var(q')= " << posZInCh.z()*posZInCh.z() << "*" <<
// theZedSeg.parametersError()[0][0] << " + " <<
// theZedSeg.parametersError()[1][1] << " + " <<
// 2*posZInCh.z() << "*" << theZedSeg.parametersError()[0][1] ;
theCovMatrix[3][3] = 2. * (posZInCh.z() * posZInCh.z()) * theZedSeg.parametersError()[0][0] +
theZedSeg.parametersError()[1][1] + 2. * posZInCh.z() * theZedSeg.parametersError()[0][1];
// cout << " = " << theCovMatrix[3][3] << endl;
}
std::ostream& operator<<(std::ostream& os, const DTRecSegment4D& seg) {
os << "Pos " << seg.localPosition() << " Dir: " << seg.localDirection() << " dim: " << seg.dimension()
<< " chi2/ndof: " << seg.chi2() << "/" << seg.degreesOfFreedom() << " :";
if (seg.hasPhi())
os << seg.phiSegment()->recHits().size();
else
os << 0;
os << ":";
if (seg.hasZed())
os << seg.zSegment()->recHits().size();
else
os << 0;
return os;
}
/// Access to component RecHits (if any)
std::vector<const TrackingRecHit*> DTRecSegment4D::recHits() const {
std::vector<const TrackingRecHit*> pointersOfRecHits;
if (hasPhi())
pointersOfRecHits.push_back(phiSegment());
if (hasZed())
pointersOfRecHits.push_back(zSegment());
return pointersOfRecHits;
}
/// Non-const access to component RecHits (if any)
std::vector<TrackingRecHit*> DTRecSegment4D::recHits() {
std::vector<TrackingRecHit*> pointersOfRecHits;
if (hasPhi())
pointersOfRecHits.push_back(phiSegment());
if (hasZed())
pointersOfRecHits.push_back(zSegment());
return pointersOfRecHits;
}
DTChamberId DTRecSegment4D::chamberId() const { return DTChamberId(geographicalId()); }
|