1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
#ifndef DATAFORMATS_ECALRECHIT_H
#define DATAFORMATS_ECALRECHIT_H 1
#include "DataFormats/DetId/interface/DetId.h"
#include "DataFormats/CaloRecHit/interface/CaloRecHit.h"
#include "DataFormats/EcalDigi/interface/EcalDataFrame.h"
#include <vector>
#include <cmath>
/** \class EcalRecHit
*
* \author P. Meridiani INFN Roma1
*/
class EcalRecHit {
public:
typedef DetId key_type;
// recHit flags
enum Flags {
kGood = 0, // channel ok, the energy and time measurement are reliable
kPoorReco, // the energy is available from the UncalibRecHit, but approximate (bad shape, large chi2)
kOutOfTime, // the energy is available from the UncalibRecHit (sync reco), but the event is out of time
kFaultyHardware, // The energy is available from the UncalibRecHit, channel is faulty at some hardware level (e.g. noisy)
kNoisy, // the channel is very noisy
kPoorCalib, // the energy is available from the UncalibRecHit, but the calibration of the channel is poor
kSaturated, // saturated channel (recovery not tried)
kLeadingEdgeRecovered, // saturated channel: energy estimated from the leading edge before saturation
kNeighboursRecovered, // saturated/isolated dead: energy estimated from neighbours
kTowerRecovered, // channel in TT with no data link, info retrieved from Trigger Primitive
kDead, // channel is dead and any recovery fails
kKilled, // MC only flag: the channel is killed in the real detector
kTPSaturated, // the channel is in a region with saturated TP
kL1SpikeFlag, // the channel is in a region with TP with sFGVB = 0
kWeird, // the signal is believed to originate from an anomalous deposit (spike)
kDiWeird, // the signal is anomalous, and neighbors another anomalous signal
kHasSwitchToGain6, // at least one data frame is in G6
kHasSwitchToGain1, // at least one data frame is in G1
//
kUnknown // to ease the interface with functions returning flags.
};
// ES recHit flags
enum ESFlags {
kESGood,
kESDead,
kESHot,
kESPassBX,
kESTwoGoodRatios,
kESBadRatioFor12,
kESBadRatioFor23Upper,
kESBadRatioFor23Lower,
kESTS1Largest,
kESTS3Largest,
kESTS3Negative,
kESSaturated,
kESTS2Saturated,
kESTS3Saturated,
kESTS13Sigmas,
kESTS15Sigmas
};
EcalRecHit() : energy_(0), time_(0), flagBits_(0) {}
// by default a recHit is greated with no flag
explicit EcalRecHit(const DetId& id, float energy, float time, uint32_t extra = 0, uint32_t flagBits = 0)
: id_(id), energy_(energy), time_(time), flagBits_(flagBits), extra_(extra) {}
float energy() const { return energy_; }
void setEnergy(float energy) { energy_ = energy; }
float time() const { return time_; }
void setTime(float time) { time_ = time; }
const DetId& detid() const { return id_; }
/// get the id
// For the moment not returning a specific id for subdetector
// @TODO why this method?! should use detid()
DetId id() const { return DetId(detid()); }
bool isRecovered() const {
return checkFlag(kLeadingEdgeRecovered) || checkFlag(kNeighboursRecovered) || checkFlag(kTowerRecovered);
}
bool isTimeValid() const { return (this->timeError() > 0); }
bool isTimeErrorValid() const {
if (!isTimeValid())
return false;
if (timeError() >= 10000)
return false;
return true;
}
static inline uint32_t getMasked(uint32_t value, uint32_t offset, uint32_t width) {
return (value >> offset) & ((1 << width) - 1);
}
static inline uint32_t setMasked(uint32_t value, uint32_t x, uint32_t offset, uint32_t width) {
const uint32_t mask = ((1 << width) - 1) << offset;
value &= ~mask;
value |= (x & ((1U << width) - 1)) << offset;
return value;
}
static inline int getPower10(float e) {
static constexpr float p10[] = {1.e-2f, 1.e-1f, 1.f, 1.e1f, 1.e2f, 1.e3f, 1.e4f, 1.e5f, 1.e6f};
int b = e < p10[4] ? 0 : 5;
for (; b < 9; ++b)
if (e < p10[b])
break;
return b;
}
/* the new bit structure
* 0..6 - chi2 in time events (chi2()), offset=0, width=7
* 8..20 - energy uncertainty, offset=8, width=13
* 24..31 - timeError(), offset=24, width=8
*/
float chi2() const {
uint32_t rawChi2 = getMasked(extra_, 0, 7);
return (float)rawChi2 / (float)((1 << 7) - 1) * 64.;
}
void setChi2(float chi2) {
// bound the max value of the chi2
if (chi2 > 64)
chi2 = 64;
// use 7 bits
uint32_t rawChi2 = lround(chi2 / 64. * ((1 << 7) - 1));
extra_ = setMasked(extra_, rawChi2, 0, 7);
}
float energyError() const {
uint32_t rawEnergy = getMasked(extra_, 8, 13);
uint16_t exponent = rawEnergy >> 10;
uint16_t significand = ~(0xE << 9) & rawEnergy;
return (float)significand * pow(10, exponent - 5);
}
// set the energy uncertainty
// (only energy >= 0 will be stored)
void setEnergyError(float energy) {
uint32_t rawEnergy = 0;
if (energy > 0.001) {
uint16_t exponent = getPower10(energy);
static constexpr float ip10[] = {1.e5f, 1.e4f, 1.e3f, 1.e2f, 1.e1f, 1.e0f, 1.e-1f, 1.e-2f, 1.e-3f, 1.e-4};
uint16_t significand = lround(energy * ip10[exponent]);
// use 13 bits (3 exponent, 10 significand)
rawEnergy = exponent << 10 | significand;
/* here for doc and regression test
uint16_t exponent_old = lround(floor(log10(energy))) + 3;
uint16_t significand_old = lround(energy/pow(10, exponent - 5));
std::cout << energy << ' ' << exponent << ' ' << significand
<< ' ' << exponent_old << ' ' << significand_old << std::endl;
assert(exponent==exponent_old);
assert(significand==significand_old);
*/
}
extra_ = setMasked(extra_, rawEnergy, 8, 13);
}
float timeError() const {
uint32_t timeErrorBits = getMasked(extra_, 24, 8);
// all bits off --> time reco bailed out (return negative value)
if ((0xFF & timeErrorBits) == 0x00)
return -1;
// all bits on --> time error over 5 ns (return large value)
if ((0xFF & timeErrorBits) == 0xFF)
return 10000;
float LSB = 1.26008;
uint8_t exponent = timeErrorBits >> 5;
uint8_t significand = timeErrorBits & ~(0x7 << 5);
return pow(2., exponent) * significand * LSB / 1000.;
}
void setTimeError(uint8_t timeErrBits) { extra_ = setMasked(extra_, timeErrBits & 0xFF, 24, 8); }
/// set the flags (from Flags or ESFlags)
void setFlag(int flag) { flagBits_ |= (0x1 << flag); }
void unsetFlag(int flag) { flagBits_ &= ~(0x1 << flag); }
/// check if the flag is true
bool checkFlag(int flag) const { return flagBits_ & (0x1 << flag); }
/// check if one of the flags in a set is true
bool checkFlags(const std::vector<int>& flagsvec) const {
for (std::vector<int>::const_iterator flagPtr = flagsvec.begin(); flagPtr != flagsvec.end();
++flagPtr) { // check if one of the flags is up
if (checkFlag(*flagPtr))
return true;
}
return false;
}
uint32_t flagsBits() const { return flagBits_; }
/// apply a bitmask to our flags. Experts only
bool checkFlagMask(uint32_t mask) const { return flagBits_ & mask; }
/// DEPRECATED provided for temporary backward compatibility
Flags recoFlag() const {
for (int i = kUnknown;; --i) {
if (checkFlag(i))
return Flags(i);
if (i == 0)
break;
}
// no flag assigned, assume good
return kGood;
}
// For CC Timing reco
float nonCorrectedTime() const {
uint8_t jitterErrorBits = getMasked(extra_, 24, 8);
float encBits = static_cast<float>(jitterErrorBits);
float decTimeDif = ecalcctiming::clockToNS * (ecalcctiming::encodingOffest - encBits / ecalcctiming::encodingValue);
float nonCorrectedTime =
(encBits > 1 && encBits < 254) ? ecalcctiming::nonCorrectedSlope * time_ + decTimeDif : -30.0;
return nonCorrectedTime;
}
private:
// from calorechit
DetId id_;
float energy_;
float time_;
/// store rechit condition (see Flags enum) in a bit-wise way
uint32_t flagBits_;
// packed uint32_t for timeError, chi2, energyError
uint32_t extra_;
};
std::ostream& operator<<(std::ostream& s, const EcalRecHit& hit);
#endif
|