1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
#include "DataFormats/EgammaCandidates/interface/Photon.h"
#include "DataFormats/EgammaReco/interface/SuperClusterFwd.h"
using namespace reco;
Photon::Photon(const LorentzVector& p4, const Point& caloPos, const PhotonCoreRef& core, const Point& vtx)
: RecoCandidate(0, p4, vtx, 22),
caloPosition_(caloPos),
photonCore_(core),
pixelSeed_(false),
haloTaggerMVAVal_(99) {}
Photon::Photon(const Photon& rhs)
: RecoCandidate(rhs),
caloPosition_(rhs.caloPosition_),
photonCore_(rhs.photonCore_),
pixelSeed_(rhs.pixelSeed_),
fiducialFlagBlock_(rhs.fiducialFlagBlock_),
isolationR04_(rhs.isolationR04_),
isolationR03_(rhs.isolationR03_),
showerShapeBlock_(rhs.showerShapeBlock_),
full5x5_showerShapeBlock_(rhs.full5x5_showerShapeBlock_),
saturationInfo_(rhs.saturationInfo_),
eCorrections_(rhs.eCorrections_),
mipVariableBlock_(rhs.mipVariableBlock_),
pfIsolation_(rhs.pfIsolation_),
pfID_(rhs.pfID_),
haloTaggerMVAVal_(rhs.haloTaggerMVAVal_) {}
Photon::~Photon() {}
Photon* Photon::clone() const { return new Photon(*this); }
bool Photon::overlap(const Candidate& c) const {
const RecoCandidate* o = dynamic_cast<const RecoCandidate*>(&c);
return (o != nullptr && (checkOverlap(superCluster(), o->superCluster())));
return false;
}
void Photon::setVertex(const Point& vertex) {
math::XYZVectorF direction = caloPosition() - vertex;
double energy = this->energy();
math::XYZVectorF momentum = direction.unit() * energy;
math::XYZTLorentzVector lv(momentum.x(), momentum.y(), momentum.z(), energy);
setP4(lv);
LeafCandidate::setVertex(vertex);
}
reco::SuperClusterRef Photon::superCluster() const { return this->photonCore()->superCluster(); }
int Photon::conversionTrackProvenance(const edm::RefToBase<reco::Track>& convTrack) const {
const reco::ConversionRefVector& conv2leg = this->photonCore()->conversions();
const reco::ConversionRefVector& conv1leg = this->photonCore()->conversionsOneLeg();
int origin = -1;
bool isEg = false, isPf = false;
for (unsigned iConv = 0; iConv < conv2leg.size(); iConv++) {
std::vector<edm::RefToBase<reco::Track> > convtracks = conv2leg[iConv]->tracks();
for (unsigned itk = 0; itk < convtracks.size(); itk++) {
if (convTrack == convtracks[itk])
isEg = true;
}
}
for (unsigned iConv = 0; iConv < conv1leg.size(); iConv++) {
std::vector<edm::RefToBase<reco::Track> > convtracks = conv1leg[iConv]->tracks();
for (unsigned itk = 0; itk < convtracks.size(); itk++) {
if (convTrack == convtracks[itk])
isPf = true;
}
}
if (isEg)
origin = egamma;
if (isPf)
origin = pflow;
if (isEg && isPf)
origin = both;
return origin;
}
void Photon::setCorrectedEnergy(P4type type, float newEnergy, float delta_e, bool setToRecoCandidate) {
math::XYZTLorentzVectorD newP4 = p4();
newP4 *= newEnergy / newP4.e();
switch (type) {
case ecal_standard:
eCorrections_.scEcalEnergy = newEnergy;
eCorrections_.scEcalEnergyError = delta_e;
break;
case ecal_photons:
eCorrections_.phoEcalEnergy = newEnergy;
eCorrections_.phoEcalEnergyError = delta_e;
break;
case regression1:
eCorrections_.regression1Energy = newEnergy;
eCorrections_.regression1EnergyError = delta_e;
[[fallthrough]];
case regression2:
eCorrections_.regression2Energy = newEnergy;
eCorrections_.regression2EnergyError = delta_e;
break;
default:
throw cms::Exception("reco::Photon") << "unexpected p4 type: " << type;
}
setP4(type, newP4, delta_e, setToRecoCandidate);
}
float Photon::getCorrectedEnergy(P4type type) const {
switch (type) {
case ecal_standard:
return eCorrections_.scEcalEnergy;
break;
case ecal_photons:
return eCorrections_.phoEcalEnergy;
break;
case regression1:
return eCorrections_.regression1Energy;
case regression2:
return eCorrections_.regression2Energy;
break;
default:
throw cms::Exception("reco::Photon") << "unexpected p4 type " << type << " cannot return the energy value: ";
}
}
float Photon::getCorrectedEnergyError(P4type type) const {
switch (type) {
case ecal_standard:
return eCorrections_.scEcalEnergyError;
break;
case ecal_photons:
return eCorrections_.phoEcalEnergyError;
break;
case regression1:
return eCorrections_.regression1EnergyError;
case regression2:
return eCorrections_.regression2EnergyError;
break;
default:
throw cms::Exception("reco::Photon")
<< "unexpected p4 type " << type << " cannot return the uncertainty on the energy: ";
}
}
void Photon::setP4(P4type type, const LorentzVector& p4, float error, bool setToRecoCandidate) {
switch (type) {
case ecal_standard:
eCorrections_.scEcalP4 = p4;
eCorrections_.scEcalEnergyError = error;
break;
case ecal_photons:
eCorrections_.phoEcalP4 = p4;
eCorrections_.phoEcalEnergyError = error;
break;
case regression1:
eCorrections_.regression1P4 = p4;
eCorrections_.regression1EnergyError = error;
[[fallthrough]];
case regression2:
eCorrections_.regression2P4 = p4;
eCorrections_.regression2EnergyError = error;
break;
default:
throw cms::Exception("reco::Photon") << "unexpected p4 type: " << type;
}
if (setToRecoCandidate) {
setP4(p4);
eCorrections_.candidateP4type = type;
}
}
const Candidate::LorentzVector& Photon::p4(P4type type) const {
switch (type) {
case ecal_standard:
return eCorrections_.scEcalP4;
case ecal_photons:
return eCorrections_.phoEcalP4;
case regression1:
return eCorrections_.regression1P4;
case regression2:
return eCorrections_.regression2P4;
default:
throw cms::Exception("reco::Photon") << "unexpected p4 type: " << type << " cannot return p4 ";
}
}
void Photon::hcalToRun2EffDepth() {
auto& ss1 = showerShapeBlock_;
auto& ss2 = full5x5_showerShapeBlock_;
auto& iv1 = isolationR03_;
auto& iv2 = isolationR04_;
for (uint id = 2u; id < ss1.hcalOverEcal.size(); ++id) {
ss1.hcalOverEcal[1] += ss1.hcalOverEcal[id];
ss1.hcalOverEcalBc[1] += ss1.hcalOverEcalBc[id];
ss1.hcalOverEcal[id] = 0.f;
ss1.hcalOverEcalBc[id] = 0.f;
ss2.hcalOverEcal[1] += ss2.hcalOverEcal[id];
ss2.hcalOverEcalBc[1] += ss2.hcalOverEcalBc[id];
ss2.hcalOverEcal[id] = 0.f;
ss2.hcalOverEcalBc[id] = 0.f;
iv1.hcalRecHitSumEt[1] += iv1.hcalRecHitSumEt[id];
iv1.hcalRecHitSumEtBc[1] += iv1.hcalRecHitSumEtBc[id];
iv1.hcalRecHitSumEt[id] = 0.f;
iv1.hcalRecHitSumEtBc[id] = 0.f;
iv2.hcalRecHitSumEt[1] += iv2.hcalRecHitSumEt[id];
iv2.hcalRecHitSumEtBc[1] += iv2.hcalRecHitSumEtBc[id];
iv2.hcalRecHitSumEt[id] = 0.f;
iv2.hcalRecHitSumEtBc[id] = 0.f;
}
}
|