GlobalErrorBase

NullMatrix

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#ifndef GlobalErrorType_H
#define GlobalErrorType_H

#include "DataFormats/GeometryCommonDetAlgo/interface/DeepCopyPointer.h"
#include "DataFormats/Math/interface/AlgebraicROOTObjects.h"
#include "DataFormats/GeometryVector/interface/GlobalPoint.h"
//
// Exceptions
//
#include "FWCore/Utilities/interface/Exception.h"

/**
   * Templated class representing a symmetric 3*3 matrix describing,  according
   * to the ErrorWeightType tag, a (cartesian) covariance matrix or the weight
   * matrix (the inverse of the covariance matrix).
   * \li To have a covariance matrix, the ErrorMatrixTag has to be used, and a 
   * typedef is available as GlobalError
   * \li To have a weight matrix, the WeightMatrixTag has to be used, and a 
   * typedef is available as Globalweight
   * 
   * The typedefs should be used in the code.
   */

template <class T, class ErrorWeightType>
class GlobalErrorBase {
public:
  /// Tag to request a null error matrix
  class NullMatrix {};

  /**
   * Default constructor, creating a null 3*3 matrix (all values are 0)
   */
  GlobalErrorBase() {}

  /** 
   * Obsolete  Constructor that allocates a null GlobalErrorBase (it does not create the error matrix at all)
   */
  GlobalErrorBase(const NullMatrix&) {}

  /**
   * Constructor.
   * The symmetric matrix stored as a lower triangular matrix
   */
  GlobalErrorBase(T c11, T c21, T c22, T c31, T c32, T c33) {
    theCartesianError(0, 0) = c11;
    theCartesianError(1, 0) = c21;
    theCartesianError(1, 1) = c22;
    theCartesianError(2, 0) = c31;
    theCartesianError(2, 1) = c32;
    theCartesianError(2, 2) = c33;
    theCartesianError(3, 0) = 0.;
    theCartesianError(3, 1) = 0.;
    theCartesianError(3, 2) = 0.;
    theCartesianError(3, 3) = 0.;
  }

  /**
   * Constructor.
   * The symmetric matrix stored as a lower triangular matrix (4D)
   */
  GlobalErrorBase(T c11, T c21, T c22, T c31, T c32, T c33, T c41, T c42, T c43, T c44) {
    theCartesianError(0, 0) = c11;
    theCartesianError(1, 0) = c21;
    theCartesianError(1, 1) = c22;
    theCartesianError(2, 0) = c31;
    theCartesianError(2, 1) = c32;
    theCartesianError(2, 2) = c33;
    theCartesianError(3, 0) = c41;
    theCartesianError(3, 1) = c42;
    theCartesianError(3, 2) = c43;
    theCartesianError(3, 3) = c44;
  }

  /**
   * Constructor from SymMatrix. The original matrix has to be a 3*3 matrix.
   */
  GlobalErrorBase(const AlgebraicSymMatrix33& err) {
    theCartesianError(0, 0) = err(0, 0);
    theCartesianError(1, 0) = err(1, 0);
    theCartesianError(1, 1) = err(1, 1);
    theCartesianError(2, 0) = err(2, 0);
    theCartesianError(2, 1) = err(2, 1);
    theCartesianError(2, 2) = err(2, 2);
    theCartesianError(3, 0) = 0.;
    theCartesianError(3, 1) = 0.;
    theCartesianError(3, 2) = 0.;
    theCartesianError(3, 3) = 0.;
  }

  /**
   * Constructor from SymMatrix. The original matrix has to be a 4*4 matrix.
   */
  GlobalErrorBase(const AlgebraicSymMatrix44& err) : theCartesianError(err) {}

  ~GlobalErrorBase() {}

  T cxx() const { return theCartesianError(0, 0); }

  T cyx() const { return theCartesianError(1, 0); }

  T cyy() const { return theCartesianError(1, 1); }

  T czx() const { return theCartesianError(2, 0); }

  T czy() const { return theCartesianError(2, 1); }

  T czz() const { return theCartesianError(2, 2); }

  T ctx() const { return theCartesianError(3, 0); }

  T cty() const { return theCartesianError(3, 1); }

  T ctz() const { return theCartesianError(3, 2); }

  T ctt() const { return theCartesianError(3, 3); }

  /**
   * Access method to the matrix,
   * /return The SymMatrix
   */
  const AlgebraicSymMatrix33 matrix() const {
    AlgebraicSymMatrix33 out;
    out(0, 0) = theCartesianError(0, 0);
    out(1, 0) = theCartesianError(1, 0);
    out(1, 1) = theCartesianError(1, 1);
    out(2, 0) = theCartesianError(2, 0);
    out(2, 1) = theCartesianError(2, 1);
    out(2, 2) = theCartesianError(2, 2);
    return out;
  }

  /**
   * Access method to the matrix,
   * /return The SymMatrix 4x4
   */
  const AlgebraicSymMatrix44& matrix4D() const { return theCartesianError; }

  T rerr(const GlobalPoint& aPoint) const {
    T r2 = aPoint.perp2();
    T x2 = aPoint.x() * aPoint.x();
    T y2 = aPoint.y() * aPoint.y();
    T xy = aPoint.x() * aPoint.y();
    if (r2 != 0)
      return std::max<T>(0, (1. / r2) * (x2 * cxx() + 2. * xy * cyx() + y2 * cyy()));
    else
      return 0.5 * (cxx() + cyy());
  }

  T phierr(const GlobalPoint& aPoint) const {
    T r2 = aPoint.perp2();
    T x2 = aPoint.x() * aPoint.x();
    T y2 = aPoint.y() * aPoint.y();
    T xy = aPoint.x() * aPoint.y();
    if (r2 != 0)
      return std::max<T>(0, (1. / (r2 * r2)) * (y2 * cxx() - 2. * xy * cyx() + x2 * cyy()));
    else
      return 0;
  }

  GlobalErrorBase operator+(const GlobalErrorBase& err) const {
    return GlobalErrorBase(theCartesianError + err.theCartesianError);
  }
  GlobalErrorBase operator-(const GlobalErrorBase& err) const {
    return GlobalErrorBase(theCartesianError - err.theCartesianError);
  }

private:
  AlgebraicSymMatrix44 theCartesianError;
};

#endif