1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
|
#ifndef Geom_newTkRotation_H
#define Geom_newTkRotation_H
#include "DataFormats/GeometryVector/interface/Basic2DVector.h"
#include "DataFormats/GeometryVector/interface/Basic3DVector.h"
#include "DataFormats/GeometryVector/interface/GlobalVector.h"
#include "DataFormats/Math/interface/SSERot.h"
#include <iosfwd>
template <class T>
class TkRotation;
template <class T>
class TkRotation2D;
template <class T>
std::ostream& operator<<(std::ostream& s, const TkRotation<T>& r);
template <class T>
std::ostream& operator<<(std::ostream& s, const TkRotation2D<T>& r);
namespace geometryDetails {
void TkRotationErr1();
void TkRotationErr2();
} // namespace geometryDetails
/** Rotaion matrix used by Surface.
*/
template <class T>
class TkRotation {
public:
typedef Vector3DBase<T, GlobalTag> GlobalVector;
typedef Basic3DVector<T> BasicVector;
TkRotation() {}
TkRotation(mathSSE::Rot3<T> const& irot) : rot(irot) {}
TkRotation(T xx, T xy, T xz, T yx, T yy, T yz, T zx, T zy, T zz) : rot(xx, xy, xz, yx, yy, yz, zx, zy, zz) {}
TkRotation(const T* p) : rot(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8]) {}
TkRotation(const GlobalVector& aX, const GlobalVector& aY) {
GlobalVector uX = aX.unit();
GlobalVector uY = aY.unit();
GlobalVector uZ(uX.cross(uY));
rot.axis[0] = uX.basicVector().v;
rot.axis[1] = uY.basicVector().v;
rot.axis[2] = uZ.basicVector().v;
}
TkRotation(const BasicVector& aX, const BasicVector& aY) {
BasicVector uX = aX.unit();
BasicVector uY = aY.unit();
BasicVector uZ(uX.cross(uY));
rot.axis[0] = uX.v;
rot.axis[1] = uY.v;
rot.axis[2] = uZ.v;
}
/** Construct from global vectors of the x, y and z axes.
* The axes are assumed to be unit vectors forming
* a right-handed orthonormal basis. No checks are performed!
*/
TkRotation(const GlobalVector& uX, const GlobalVector& uY, const GlobalVector& uZ) {
rot.axis[0] = uX.basicVector().v;
rot.axis[1] = uY.basicVector().v;
rot.axis[2] = uZ.basicVector().v;
}
TkRotation(const BasicVector& uX, const BasicVector& uY, const BasicVector& uZ) {
rot.axis[0] = uX.v;
rot.axis[1] = uY.v;
rot.axis[2] = uZ.v;
}
/** rotation around abritrary axis by the amount of phi:
* its constructed by O^-1(z<->axis) rot_z(phi) O(z<->axis)
* the frame is rotated such that the z-asis corresponds to the rotation
* axis desired. THen it's rotated round the "new" z-axis, and then
* the initial transformation is "taken back" again.
* unfortuately I'm too stupid to describe such thing directly by 3 Euler
* angles.. hence I have to construckt it this way...by brute force
*/
TkRotation(const Basic3DVector<T>& axis, T phi) : rot(cos(phi), sin(phi), 0, -sin(phi), cos(phi), 0, 0, 0, 1) {
//rotation around the z-axis by phi
TkRotation tmpRotz(cos(axis.phi()), sin(axis.phi()), 0., -sin(axis.phi()), cos(axis.phi()), 0., 0., 0., 1.);
//rotation around y-axis by theta
TkRotation tmpRoty(cos(axis.theta()), 0., -sin(axis.theta()), 0., 1., 0., sin(axis.theta()), 0., cos(axis.theta()));
(*this) *= tmpRoty;
(*this) *= tmpRotz; // = this * tmpRoty * tmpRotz
// (tmpRoty * tmpRotz)^-1 * this * tmpRoty * tmpRotz
*this = (tmpRoty * tmpRotz).multiplyInverse(*this);
}
/* this is the same thing...derived from the CLHEP ... it gives the
same results MODULO the sign of the rotation.... but I don't want
that... had
TkRotation (const Basic3DVector<T>& axis, float phi) {
T cx = axis.x();
T cy = axis.y();
T cz = axis.z();
T ll = axis.mag();
if (ll == 0) {
geometryDetails::TkRotationErr1();
}else{
float cosa = cos(phi), sina = sin(phi);
cx /= ll; cy /= ll; cz /= ll;
R11 = cosa + (1-cosa)*cx*cx;
R12 = (1-cosa)*cx*cy - sina*cz;
R13 = (1-cosa)*cx*cz + sina*cy;
R21 = (1-cosa)*cy*cx + sina*cz;
R22 = cosa + (1-cosa)*cy*cy;
R23 = (1-cosa)*cy*cz - sina*cx;
R31 = (1-cosa)*cz*cx - sina*cy;
R32 = (1-cosa)*cz*cy + sina*cx;
R33 = cosa + (1-cosa)*cz*cz;
}
}
*/
template <typename U>
TkRotation(const TkRotation<U>& a) : rot(a.xx(), a.xy(), a.xz(), a.yx(), a.yy(), a.yz(), a.zx(), a.zy(), a.zz()) {}
TkRotation transposed() const { return rot.transpose(); }
Basic3DVector<T> rotate(const Basic3DVector<T>& v) const { return rot.rotate(v.v); }
Basic3DVector<T> rotateBack(const Basic3DVector<T>& v) const { return rot.rotateBack(v.v); }
Basic3DVector<T> operator*(const Basic3DVector<T>& v) const { return rot.rotate(v.v); }
Basic3DVector<T> multiplyInverse(const Basic3DVector<T>& v) const { return rot.rotateBack(v.v); }
template <class Scalar>
Basic3DVector<Scalar> multiplyInverse(const Basic3DVector<Scalar>& v) const {
return Basic3DVector<Scalar>(xx() * v.x() + yx() * v.y() + zx() * v.z(),
xy() * v.x() + yy() * v.y() + zy() * v.z(),
xz() * v.x() + yz() * v.y() + zz() * v.z());
}
Basic3DVector<T> operator*(const Basic2DVector<T>& v) const {
return Basic3DVector<T>(xx() * v.x() + xy() * v.y(), yx() * v.x() + yy() * v.y(), zx() * v.x() + zy() * v.y());
}
Basic3DVector<T> multiplyInverse(const Basic2DVector<T>& v) const {
return Basic3DVector<T>(xx() * v.x() + yx() * v.y(), xy() * v.x() + yy() * v.y(), xz() * v.x() + yz() * v.y());
}
TkRotation operator*(const TkRotation& b) const { return rot * b.rot; }
TkRotation multiplyInverse(const TkRotation& b) const { return rot.transpose() * b.rot; }
TkRotation& operator*=(const TkRotation& b) { return *this = operator*(b); }
// Note a *= b; <=> a = a * b; while a.transform(b); <=> a = b * a;
TkRotation& transform(const TkRotation& b) { return *this = b.operator*(*this); }
TkRotation& rotateAxes(const Basic3DVector<T>& newX, const Basic3DVector<T>& newY, const Basic3DVector<T>& newZ) {
T del = 0.001;
if (
// the check for right-handedness is not needed since
// we want to change the handedness when it's left in cmsim
//
// fabs(newZ.x()-w.x()) > del ||
// fabs(newZ.y()-w.y()) > del ||
// fabs(newZ.z()-w.z()) > del ||
fabs(newX.mag2() - 1.) > del || fabs(newY.mag2() - 1.) > del || fabs(newZ.mag2() - 1.) > del ||
fabs(newX.dot(newY)) > del || fabs(newY.dot(newZ)) > del || fabs(newZ.dot(newX)) > del) {
geometryDetails::TkRotationErr2();
return *this;
} else {
return transform(
TkRotation(newX.x(), newY.x(), newZ.x(), newX.y(), newY.y(), newZ.y(), newX.z(), newY.z(), newZ.z()));
}
}
Basic3DVector<T> x() const { return rot.axis[0]; }
Basic3DVector<T> y() const { return rot.axis[1]; }
Basic3DVector<T> z() const { return rot.axis[2]; }
T xx() const { return rot.axis[0].arr[0]; }
T xy() const { return rot.axis[0].arr[1]; }
T xz() const { return rot.axis[0].arr[2]; }
T yx() const { return rot.axis[1].arr[0]; }
T yy() const { return rot.axis[1].arr[1]; }
T yz() const { return rot.axis[1].arr[2]; }
T zx() const { return rot.axis[2].arr[0]; }
T zy() const { return rot.axis[2].arr[1]; }
T zz() const { return rot.axis[2].arr[2]; }
private:
mathSSE::Rot3<T> rot;
};
template <>
std::ostream& operator<< <float>(std::ostream& s, const TkRotation<float>& r);
template <>
std::ostream& operator<< <double>(std::ostream& s, const TkRotation<double>& r);
template <class T, class U>
inline Basic3DVector<U> operator*(const TkRotation<T>& r, const Basic3DVector<U>& v) {
return Basic3DVector<U>(r.xx() * v.x() + r.xy() * v.y() + r.xz() * v.z(),
r.yx() * v.x() + r.yy() * v.y() + r.yz() * v.z(),
r.zx() * v.x() + r.zy() * v.y() + r.zz() * v.z());
}
template <class T, class U>
inline TkRotation<typename PreciseFloatType<T, U>::Type> operator*(const TkRotation<T>& a, const TkRotation<U>& b) {
typedef TkRotation<typename PreciseFloatType<T, U>::Type> RT;
return RT(a.xx() * b.xx() + a.xy() * b.yx() + a.xz() * b.zx(),
a.xx() * b.xy() + a.xy() * b.yy() + a.xz() * b.zy(),
a.xx() * b.xz() + a.xy() * b.yz() + a.xz() * b.zz(),
a.yx() * b.xx() + a.yy() * b.yx() + a.yz() * b.zx(),
a.yx() * b.xy() + a.yy() * b.yy() + a.yz() * b.zy(),
a.yx() * b.xz() + a.yy() * b.yz() + a.yz() * b.zz(),
a.zx() * b.xx() + a.zy() * b.yx() + a.zz() * b.zx(),
a.zx() * b.xy() + a.zy() * b.yy() + a.zz() * b.zy(),
a.zx() * b.xz() + a.zy() * b.yz() + a.zz() * b.zz());
}
template <class T>
class TkRotation2D {
public:
typedef Basic2DVector<T> BasicVector;
TkRotation2D() {}
TkRotation2D(mathSSE::Rot2<T> const& irot) : rot(irot) {}
TkRotation2D(T xx, T xy, T yx, T yy) : rot(xx, xy, yx, yy) {}
TkRotation2D(const T* p) : rot(p[0], p[1], p[2], p[3]) {}
TkRotation2D(const BasicVector& aX) {
BasicVector uX = aX.unit();
BasicVector uY(-uX.y(), uX.x());
rot.axis[0] = uX.v;
rot.axis[1] = uY.v;
}
TkRotation2D(const BasicVector& uX, const BasicVector& uY) {
rot.axis[0] = uX.v;
rot.axis[1] = uY.v;
}
BasicVector x() const { return rot.axis[0]; }
BasicVector y() const { return rot.axis[1]; }
TkRotation2D transposed() const { return rot.transpose(); }
BasicVector rotate(const BasicVector& v) const { return rot.rotate(v.v); }
BasicVector rotateBack(const BasicVector& v) const { return rot.rotateBack(v.v); }
private:
mathSSE::Rot2<T> rot;
};
template <>
std::ostream& operator<< <float>(std::ostream& s, const TkRotation2D<float>& r);
template <>
std::ostream& operator<< <double>(std::ostream& s, const TkRotation2D<double>& r);
#endif
|