1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
#ifndef GeometryVector_Geom_Phi_h
#define GeometryVector_Geom_Phi_h
#include "DataFormats/GeometryVector/interface/Pi.h"
#include "DataFormats/Math/interface/deltaPhi.h"
#include "DataFormats/Math/interface/angle_units.h"
#include <cmath>
namespace Geom {
/** \class Phi
* A class for azimuthal angle represantation and algebra.
* The use of Phi<T> is tranparant due to the implicit conversion to T
* Constructs like cos(phi) work as with float or double.
* The difference with respect to built-in types is that
* Phi is kept in the range (-pi, pi] by default, and this is consistently
* implemented in aritmetic operations. In other words, Phi implements
* "modulo(2 pi)" arithmetics.
* Phi can be instantiated to implement the range 0 to 2pi.
*/
using angle_units::operators::operator""_deg;
using angle_units::operators::convertRadToDeg;
struct MinusPiToPi {}; // Dummy struct to indicate -pi to pi range
struct ZeroTo2pi {}; // Dummy struct to indicate 0 to 2pi range
template <typename T1, typename Range>
class NormalizeWrapper {};
template <typename T1>
class NormalizeWrapper<T1, MinusPiToPi> {
public:
static void normalize(T1& value) { // Reduce range to -pi to pi
if (value > twoPi() || value < -twoPi()) {
value = std::fmod(value, static_cast<T1>(twoPi()));
}
if (value <= -pi())
value += twoPi();
if (value > pi())
value -= twoPi();
}
};
template <typename T1>
class NormalizeWrapper<T1, ZeroTo2pi> { // Reduce range to 0 to 2pi
public:
static void normalize(T1& value) { value = angle0to2pi::make0To2pi(value); }
};
template <typename T1, typename Range = MinusPiToPi>
class Phi {
public:
/// Default constructor does not initialise - just as double.
Phi() {}
// Constructor from T1.
// Not "explicit" to enable convenient conversions.
// There may be cases of ambiguities because of multiple possible
// conversions, in which case explicit casts must be used.
// The constructor provides range checking and normalization,
// e.g. the value of Phi(2*pi()+1) is 1
Phi(const T1& val) : theValue(val) { normalize(theValue); }
/// conversion operator makes transparent use possible.
operator T1() const { return theValue; }
/// Template argument conversion
template <typename T2, typename Range1>
operator Phi<T2, Range1>() {
return Phi<T2, Range1>(theValue);
}
/// Explicit access to value in case implicit conversion not OK
T1 value() const { return theValue; }
// so that template classes expecting phi() works! (deltaPhi)
T1 phi() const { return theValue; }
/// Standard arithmetics
Phi& operator+=(const T1& a) {
theValue += a;
normalize(theValue);
return *this;
}
Phi& operator+=(const Phi& a) { return operator+=(a.value()); }
Phi& operator-=(const T1& a) {
theValue -= a;
normalize(theValue);
return *this;
}
Phi& operator-=(const Phi& a) { return operator-=(a.value()); }
Phi& operator*=(const T1& a) {
theValue *= a;
normalize(theValue);
return *this;
}
Phi& operator/=(const T1& a) {
theValue /= a;
normalize(theValue);
return *this;
}
T1 degrees() const { return convertRadToDeg(theValue); }
// nearZero() tells whether the angle is close enough to 0 to be considered 0.
// The default tolerance is 1 degree.
inline bool nearZero(float tolerance = 1.0_deg) const { return (std::abs(theValue) - tolerance <= 0.0); }
// nearEqual() tells whether two angles are close enough to be considered equal.
// The default tolerance is 0.001 radian.
inline bool nearEqual(const Phi<T1, Range>& angle, float tolerance = 0.001) const {
return (std::abs(theValue - angle) - tolerance <= 0.0);
}
private:
T1 theValue;
void normalize(T1& value) { NormalizeWrapper<T1, Range>::normalize(value); }
};
/// - operator
template <typename T1, typename Range>
inline Phi<T1, Range> operator-(const Phi<T1, Range>& a) {
return Phi<T1, Range>(-a.value());
}
/// Addition
template <typename T1, typename Range>
inline Phi<T1, Range> operator+(const Phi<T1, Range>& a, const Phi<T1, Range>& b) {
return Phi<T1, Range>(a) += b;
}
/// Addition with scalar, does not change the precision
template <typename T1, typename Range, typename Scalar>
inline Phi<T1, Range> operator+(const Phi<T1, Range>& a, const Scalar& b) {
return Phi<T1, Range>(a) += b;
}
/// Addition with scalar, does not change the precision
template <typename T1, typename Range, typename Scalar>
inline Phi<T1, Range> operator+(const Scalar& a, const Phi<T1, Range>& b) {
return Phi<T1, Range>(b) += a;
}
/// Subtraction
template <typename T1, typename Range>
inline Phi<T1, Range> operator-(const Phi<T1, Range>& a, const Phi<T1, Range>& b) {
return Phi<T1, Range>(a) -= b;
}
/// Subtraction with scalar, does not change the precision
template <typename T1, typename Range, typename Scalar>
inline Phi<T1, Range> operator-(const Phi<T1, Range>& a, const Scalar& b) {
return Phi<T1, Range>(a) -= b;
}
/// Subtraction with scalar, does not change the precision
template <typename T1, typename Range, typename Scalar>
inline Phi<T1, Range> operator-(const Scalar& a, const Phi<T1, Range>& b) {
return Phi<T1, Range>(a - b.value());
}
/// Multiplication with scalar, does not change the precision
template <typename T1, typename Range, typename Scalar>
inline Phi<T1, Range> operator*(const Phi<T1, Range>& a, const Scalar& b) {
return Phi<T1, Range>(a) *= b;
}
/// Multiplication with scalar
template <typename T1, typename Range>
inline Phi<T1, Range> operator*(double a, const Phi<T1, Range>& b) {
return Phi<T1, Range>(b) *= a;
}
/// Division
template <typename T1, typename Range>
inline T1 operator/(const Phi<T1, Range>& a, const Phi<T1, Range>& b) {
return a.value() / b.value();
}
/// Division by scalar
template <typename T1, typename Range>
inline Phi<T1, Range> operator/(const Phi<T1, Range>& a, double b) {
return Phi<T1, Range>(a) /= b;
}
// For convenience
template <typename T>
using Phi0To2pi = Phi<T, ZeroTo2pi>;
} // namespace Geom
/*
// this a full mess with the above that is a mess in itself
#include "DataFormats/Math/interface/deltaPhi.h"
namespace reco {
template <class T1,class T2>
inline double deltaPhi(const Geom::Phi<T1> phi1, const Geom::Phi<T2> phi2) {
return deltaPhi(static_cast<double>(phi1.value()), static_cast<double>(phi2.value()));
}
template <class T>
inline double deltaPhi(const Geom::Phi<T> phi1, double phi2) {
return deltaPhi(static_cast<double>(phi1.value()), phi2);
}
template <class T>
inline double deltaPhi(const Geom::Phi<T> phi1, float phi2) {
return deltaPhi(static_cast<double>(phi1.value()), static_cast<double>(phi2));
}
template <class T>
inline double deltaPhi(double phi1, const Geom::Phi<T> phi2) {
return deltaPhi(phi1, static_cast<double>(phi2.value()) );
}
template <class T>
inline double deltaPhi(float phi1, const Geom::Phi<T> phi2) {
return deltaPhi(static_cast<double>(phi1),static_cast<double>(phi2.value()) );
}
}
*/
#endif
|