1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
#ifndef GeometryVector_oldBasic2DVector_h
#define GeometryVector_oldBasic2DVector_h
#include "DataFormats/GeometryVector/interface/Phi.h"
#include "DataFormats/GeometryVector/interface/PreciseFloatType.h"
#include "DataFormats/GeometryVector/interface/CoordinateSets.h"
#if (!defined(__CLING__))
#include "DataFormats/Math/interface/SIMDVec.h"
#endif
#include <cmath>
#include <iosfwd>
template < class T>
class Basic2DVector {
public:
typedef Basic2DVector<T> MathVector;
typedef T ScalarType;
typedef Geom::Polar2Cartesian<T> Polar;
/** default constructor uses default constructor of T to initialize the
* components. For built-in floating-point types this means initialization
* to zero
*/
Basic2DVector() : theX(0), theY(0) {}
/// Copy constructor from same type. Should not be needed but for gcc bug 12685
Basic2DVector( const Basic2DVector & p) :
theX(p.x()), theY(p.y()) {}
/** Explicit constructor from other (possibly unrelated) vector classes
* The only constraint on the argument type is that it has methods
* x() and y(), and that these methods return a type convertible to T.
* Examples of use are
* <BR> construction from a Basic2DVector with different precision
* <BR> construction from a coordinate system converter
*/
template <class Other>
explicit Basic2DVector( const Other& p) : theX(p.x()), theY(p.y()) {}
/// construct from cartesian coordinates
Basic2DVector( const T& x, const T& y) : theX(x), theY(y) {}
#if defined(USE_EXTVECT)
// constructor from Vec2 or vec4
template<typename U>
Basic2DVector(Vec2<U> const& iv) :
theX(iv[0]), theY(iv[1]) {}
template<typename U>
Basic2DVector(Vec4<U> const& iv) :
theX(iv.arr[0]), theY(iv.arr[1]) {}
#elif defined(USE_SSEVECT)
// constructor from Vec2 or vec4
template<typename U>
Basic2DVector(mathSSE::Vec2<U> const& iv) :
theX(iv.arr[0]), theY(iv.arr[1]) {}
template<typename U>
Basic2DVector(mathSSE::Vec4<U> const& iv) :
theX(iv.arr[0]), theY(iv.arr[1]) {}
#endif
T operator[](int i) const { return i==0 ? theX : theY ;}
T & operator[](int i) { return i==0 ? theX : theY ;}
/// Cartesian x coordinate
T x() const { return theX;}
/// Cartesian y coordinate
T y() const { return theY;}
/// The vector magnitude squared. Equivalent to vec.dot(vec)
T mag2() const { return theX*theX + theY*theY;}
/// The vector magnitude. Equivalent to sqrt(vec.mag2())
T mag() const { return std::sqrt( mag2());}
/// Radius, same as mag()
T r() const { return mag();}
/** Azimuthal angle. The value is returned in radians, in the range (-pi,pi].
* Same precision as the system atan2(x,y) function.
* The return type is Geom::Phi<T>, see it's documentation.
*/
T barePhi() const {return std::atan2(theY,theX);}
Geom::Phi<T> phi() const {return Geom::Phi<T>(atan2(theY,theX));}
/** Unit vector parallel to this.
* If mag() is zero, a zero vector is returned.
*/
Basic2DVector unit() const {
T my_mag = mag();
return my_mag == 0 ? *this : *this / my_mag;
}
/** Operator += with a Basic2DVector of possibly different precision.
*/
template <class U>
Basic2DVector& operator+= ( const Basic2DVector<U>& p) {
theX += p.x();
theY += p.y();
return *this;
}
/** Operator -= with a Basic2DVector of possibly different precision.
*/
template <class U>
Basic2DVector& operator-= ( const Basic2DVector<U>& p) {
theX -= p.x();
theY -= p.y();
return *this;
}
/// Unary minus, returns a vector with components (-x(),-y(),-z())
Basic2DVector operator-() const { return Basic2DVector(-x(),-y());}
/// Scaling by a scalar value (multiplication)
Basic2DVector& operator*= ( const T& t) {
theX *= t;
theY *= t;
return *this;
}
/// Scaling by a scalar value (division)
Basic2DVector& operator/= ( const T& t) {
theX /= t;
theY /= t;
return *this;
}
/// Scalar product, or "dot" product, with a vector of same type.
T dot( const Basic2DVector& v) const { return x()*v.x() + y()*v.y();}
/** Scalar (or dot) product with a vector of different precision.
* The product is computed without loss of precision. The type
* of the returned scalar is the more precise of the scalar types
* of the two vectors.
*/
template <class U>
typename PreciseFloatType<T,U>::Type dot( const Basic2DVector<U>& v) const {
return x()*v.x() + y()*v.y();
}
/// Vector product, or "cross" product, with a vector of same type.
T cross( const Basic2DVector& v) const { return x()*v.y() - y()*v.x();}
/** Vector (or cross) product with a vector of different precision.
* The product is computed without loss of precision. The type
* of the returned scalar is the more precise of the scalar types
* of the two vectors.
*/
template <class U>
typename PreciseFloatType<T,U>::Type cross( const Basic2DVector<U>& v) const {
return x()*v.y() - y()*v.x();
}
private:
T theX;
T theY;
};
namespace geometryDetails {
std::ostream & print2D(std::ostream& s, double x, double y);
}
/// simple text output to standard streams
template <class T>
inline std::ostream & operator<<( std::ostream& s, const Basic2DVector<T>& v) {
return geometryDetails::print2D(s, v.x(),v.y());
}
/// vector sum and subtraction of vectors of possibly different precision
template <class T, class U>
inline Basic2DVector<typename PreciseFloatType<T,U>::Type>
operator+( const Basic2DVector<T>& a, const Basic2DVector<U>& b) {
typedef Basic2DVector<typename PreciseFloatType<T,U>::Type> RT;
return RT(a.x()+b.x(), a.y()+b.y());
}
template <class T, class U>
inline Basic2DVector<typename PreciseFloatType<T,U>::Type>
operator-( const Basic2DVector<T>& a, const Basic2DVector<U>& b) {
typedef Basic2DVector<typename PreciseFloatType<T,U>::Type> RT;
return RT(a.x()-b.x(), a.y()-b.y());
}
// scalar product of vectors of same precision
template <class T>
inline T operator*( const Basic2DVector<T>& v1, const Basic2DVector<T>& v2) {
return v1.dot(v2);
}
/// scalar product of vectors of different precision
template <class T, class U>
inline typename PreciseFloatType<T,U>::Type operator*( const Basic2DVector<T>& v1,
const Basic2DVector<U>& v2) {
return v1.x()*v2.x() + v1.y()*v2.y();
}
/** Multiplication by scalar, does not change the precision of the vector.
* The return type is the same as the type of the vector argument.
*/
template <class T, class Scalar>
inline Basic2DVector<T> operator*( const Basic2DVector<T>& v, const Scalar& s) {
T t = static_cast<T>(s);
return Basic2DVector<T>(v.x()*t, v.y()*t);
}
/// Same as operator*( Vector, Scalar)
template <class T, class Scalar>
inline Basic2DVector<T> operator*( const Scalar& s, const Basic2DVector<T>& v) {
T t = static_cast<T>(s);
return Basic2DVector<T>(v.x()*t, v.y()*t);
}
/** Division by scalar, does not change the precision of the vector.
* The return type is the same as the type of the vector argument.
*/
template <class T, class Scalar>
inline Basic2DVector<T> operator/( const Basic2DVector<T>& v, const Scalar& s) {
T t = static_cast<T>(s);
return Basic2DVector<T>(v.x()/t, v.y()/t);
}
typedef Basic2DVector<float> Basic2DVectorF;
typedef Basic2DVector<double> Basic2DVectorD;
#endif // GeometryVector_Basic2DVector_h
|