1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
// Author: Felice Pantaleo - felice.pantaleo@cern.ch
// Date: 09/2018
#ifndef DataFormats_HGCalReco_Trackster_h
#define DataFormats_HGCalReco_Trackster_h
#include <array>
#include <vector>
#include "DataFormats/Provenance/interface/ProductID.h"
#include "DataFormats/Math/interface/Vector3D.h"
#include <Eigen/Core>
// A Trackster is a Direct Acyclic Graph created when
// pattern recognition algorithms connect hits or
// layer clusters together in a 3D object.
namespace ticl {
class Trackster {
public:
typedef math::XYZVectorF Vector;
enum IterationIndex { TRKEM = 0, EM, TRKHAD, HAD, MIP, SIM, SIM_CP };
// types considered by the particle identification
enum class ParticleType {
photon = 0,
electron,
muon,
neutral_pion,
charged_hadron,
neutral_hadron,
ambiguous,
unknown,
};
enum class PCAOrdering { ascending = 0, descending };
Trackster()
: barycenter_({0.f, 0.f, 0.f}),
regressed_energy_(0.f),
raw_energy_(0.f),
boundTime_(0.f),
time_(0.f),
timeError_(-1.f),
id_probabilities_{},
raw_pt_(0.f),
raw_em_pt_(0.f),
raw_em_energy_(0.f),
seedIndex_(-1),
eigenvalues_{},
sigmas_{},
sigmasPCA_{},
iterationIndex_(0) {}
inline void setIteration(const Trackster::IterationIndex i) { iterationIndex_ = i; }
std::vector<unsigned int> &vertices() { return vertices_; }
std::vector<float> &vertex_multiplicity() { return vertex_multiplicity_; }
std::vector<std::array<unsigned int, 2> > &edges() { return edges_; }
inline void setSeed(edm::ProductID pid, int index) {
seedID_ = pid;
seedIndex_ = index;
}
inline void setTimeAndError(float t, float tError) {
time_ = t;
timeError_ = tError;
}
inline void setRegressedEnergy(float value) { regressed_energy_ = value; }
inline void setRawEnergy(float value) { raw_energy_ = value; }
inline void addToRawEnergy(float value) { raw_energy_ += value; }
inline void setRawEmEnergy(float value) { raw_em_energy_ = value; }
inline void addToRawEmEnergy(float value) { raw_em_energy_ += value; }
inline void setRawPt(float value) { raw_pt_ = value; }
inline void setRawEmPt(float value) { raw_em_pt_ = value; }
inline void setBarycenter(Vector value) { barycenter_ = value; }
inline void setTrackIdx(int index) { track_idx_ = index; }
int trackIdx() const { return track_idx_; }
inline bool isHadronic(float th = 0.5f) const {
return id_probability(Trackster::ParticleType::photon) + id_probability(Trackster::ParticleType::electron) < th;
}
inline void mergeTracksters(const Trackster &other) {
*this += other;
//remove duplicates
removeDuplicates();
zeroProbabilities();
}
inline void mergeTracksters(const std::vector<Trackster> &others) {
for (auto &other : others) {
*this += other;
}
//remove duplicates
removeDuplicates();
zeroProbabilities();
}
inline void fillPCAVariables(Eigen::Vector3f const &eigenvalues,
Eigen::Matrix3f const &eigenvectors,
Eigen::Vector3f const &sigmas,
Eigen::Vector3f const &sigmasEigen,
size_t pcadimension,
PCAOrdering order) {
int original_index = 0;
for (size_t i = 0; i < pcadimension; ++i) {
sigmas_[i] = std::sqrt(sigmas[i]);
// Reverse the order, since Eigen gives back the eigevalues in
// **increasing order** while we store them in **descreasing order**.
original_index = i;
if (order == PCAOrdering::ascending)
original_index = pcadimension - i - 1;
eigenvalues_[i] = (float)eigenvalues[original_index];
eigenvectors_[i] = ticl::Trackster::Vector(
eigenvectors(0, original_index), eigenvectors(1, original_index), eigenvectors(2, original_index));
sigmasPCA_[i] = std::sqrt(sigmasEigen[original_index]);
}
original_index = 0;
if (order == PCAOrdering::ascending)
original_index = pcadimension - 1;
if (eigenvectors_[0].z() * barycenter_.z() < 0.0) {
eigenvectors_[0] = -ticl::Trackster::Vector(
eigenvectors(0, original_index), eigenvectors(1, original_index), eigenvectors(2, original_index));
}
// Now also update the pt part of the Trackster, using the PCA as direction
raw_pt_ = std::sqrt((eigenvectors_[0].Unit() * raw_energy_).perp2());
raw_em_pt_ = std::sqrt((eigenvectors_[0].Unit() * raw_em_energy_).perp2());
}
void zeroProbabilities() {
for (auto &p : id_probabilities_) {
p = 0.f;
}
}
inline void setProbabilities(float *probs) {
for (float &p : id_probabilities_) {
p = *(probs++);
}
}
inline void setIdProbability(ParticleType type, float value) { id_probabilities_[int(type)] = value; }
inline void setBoundaryTime(float t) { boundTime_ = t; };
inline const Trackster::IterationIndex ticlIteration() const { return (IterationIndex)iterationIndex_; }
inline const std::vector<unsigned int> &vertices() const { return vertices_; }
inline const unsigned int vertices(int index) const { return vertices_[index]; }
inline const std::vector<float> &vertex_multiplicity() const { return vertex_multiplicity_; }
inline const float vertex_multiplicity(int index) const { return vertex_multiplicity_[index]; }
inline const std::vector<std::array<unsigned int, 2> > &edges() const { return edges_; }
inline const edm::ProductID &seedID() const { return seedID_; }
inline const int seedIndex() const { return seedIndex_; }
inline const float time() const { return time_; }
inline const float timeError() const { return timeError_; }
inline const float regressed_energy() const { return regressed_energy_; }
inline const float raw_energy() const { return raw_energy_; }
inline const float raw_em_energy() const { return raw_em_energy_; }
inline const float raw_pt() const { return raw_pt_; }
inline const float raw_em_pt() const { return raw_em_pt_; }
inline const float boundaryTime() const { return boundTime_; };
inline const Vector &barycenter() const { return barycenter_; }
inline const std::array<float, 3> &eigenvalues() const { return eigenvalues_; }
inline const std::array<Vector, 3> &eigenvectors() const { return eigenvectors_; }
inline const Vector &eigenvectors(int index) const { return eigenvectors_[index]; }
inline const std::array<float, 3> &sigmas() const { return sigmas_; }
inline const std::array<float, 3> &sigmasPCA() const { return sigmasPCA_; }
inline const std::array<float, 8> &id_probabilities() const { return id_probabilities_; }
inline const float id_probabilities(int index) const { return id_probabilities_[index]; }
// convenience method to return the ID probability for a certain particle type
inline float id_probability(ParticleType type) const {
// probabilities are stored in the same order as defined in the ParticleType enum
return id_probabilities_[(int)type];
}
private:
Vector barycenter_;
float regressed_energy_;
float raw_energy_;
// -99, -1 if not available. ns units otherwise
float boundTime_;
float time_;
float timeError_;
// trackster ID probabilities
std::array<float, 8> id_probabilities_;
// The vertices of the DAG are the indices of the
// 2d objects in the global collection
std::vector<unsigned int> vertices_;
std::vector<float> vertex_multiplicity_;
float raw_pt_;
float raw_em_pt_;
float raw_em_energy_;
// Product ID of the seeding collection used to create the Trackster.
// For GlobalSeeding the ProductID is set to 0. For track-based seeding
// this is the ProductID of the track-collection used to create the
// seeding-regions.
edm::ProductID seedID_;
// For Global Seeding the index is fixed to one. For track-based seeding,
// the index is the index of the track originating the seeding region that
// created the trackster. For track-based seeding the pointer to the track
// can be cooked using the previous ProductID and this index.
int seedIndex_;
int track_idx_ = -1;
std::array<Vector, 3> eigenvectors_;
std::array<float, 3> eigenvalues_;
std::array<float, 3> sigmas_;
std::array<float, 3> sigmasPCA_;
// The edges connect two vertices together in a directed doublet
// ATTENTION: order matters!
// A doublet generator should create edges in which:
// the first element is on the inner layer and
// the outer element is on the outer layer.
std::vector<std::array<unsigned int, 2> > edges_;
// TICL iteration producing the trackster
uint8_t iterationIndex_;
inline void removeDuplicates() {
auto vtx_sorted{vertices_};
std::sort(std::begin(vtx_sorted), std::end(vtx_sorted));
for (unsigned int iLC = 1; iLC < vtx_sorted.size(); ++iLC) {
if (vtx_sorted[iLC] == vtx_sorted[iLC - 1]) {
// Clean up duplicate LCs
const auto lcIdx = vtx_sorted[iLC];
const auto firstEl = std::find(vertices_.begin(), vertices_.end(), lcIdx);
const auto firstPos = std::distance(std::begin(vertices_), firstEl);
auto iDup = std::find(std::next(firstEl), vertices_.end(), lcIdx);
while (iDup != vertices_.end()) {
vertex_multiplicity_.erase(vertex_multiplicity_.begin() + std::distance(std::begin(vertices_), iDup));
vertices_.erase(iDup);
vertex_multiplicity_[firstPos] -= 1;
iDup = std::find(std::next(firstEl), vertices_.end(), lcIdx);
};
}
}
}
inline void operator+=(const Trackster &other) {
// use getters on other
raw_energy_ += other.raw_energy();
raw_em_energy_ += other.raw_em_energy();
raw_pt_ += other.raw_pt();
raw_em_pt_ += other.raw_em_pt();
// add vertices and multiplicities
std::copy(std::begin(other.vertices()), std::end(other.vertices()), std::back_inserter(vertices_));
std::copy(std::begin(other.vertex_multiplicity()),
std::end(other.vertex_multiplicity()),
std::back_inserter(vertex_multiplicity_));
}
};
typedef std::vector<Trackster> TracksterCollection;
} // namespace ticl
#endif
|