1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
// Jet.cc
// Fedor Ratnikov, UMd
#include <sstream>
#include <cmath>
#include "DataFormats/Math/interface/deltaR.h"
#include "DataFormats/Math/interface/deltaPhi.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
//Own header file
#include "DataFormats/JetReco/interface/Jet.h"
using namespace reco;
namespace {
// approximate simple CALO geometry
// abstract baseclass for geometry.
class CaloPoint {
public:
static const double depth; // one for all relative depth of the reference point between ECAL begin and HCAL end
static const double R_BARREL;
static const double R_BARREL2;
static const double Z_ENDCAP; // 1/2(EEz+HEz)
static const double R_FORWARD; // eta=3
static const double R_FORWARD2;
static const double Z_FORWARD;
static const double Z_BIG;
};
// one for all relative depth of the reference point between ECAL begin and HCAL end
const double CaloPoint::depth = 0.1;
const double CaloPoint::R_BARREL = (1. - depth) * 143. + depth * 407.;
const double CaloPoint::R_BARREL2 = R_BARREL * R_BARREL;
const double CaloPoint::Z_ENDCAP = (1. - depth) * 320. + depth * 568.; // 1/2(EEz+HEz)
const double CaloPoint::R_FORWARD = Z_ENDCAP / std::sqrt(std::cosh(3.) * std::cosh(3.) - 1.); // eta=3
const double CaloPoint::R_FORWARD2 = R_FORWARD * R_FORWARD;
const double CaloPoint::Z_FORWARD = 1100. + depth * 165.;
const double CaloPoint::Z_BIG = 1.e5;
//old zvertex only implementation:
class CaloPointZ : private CaloPoint {
public:
CaloPointZ(double fZ, double fEta) {
static const double ETA_MAX = 5.2;
if (fZ > Z_ENDCAP)
fZ = Z_ENDCAP - 1.;
if (fZ < -Z_ENDCAP)
fZ = -Z_ENDCAP + 1; // sanity check
double tanThetaAbs = std::sqrt(std::cosh(fEta) * std::cosh(fEta) - 1.);
double tanTheta = fEta >= 0 ? tanThetaAbs : -tanThetaAbs;
double rEndcap = tanTheta == 0 ? 1.e10 : fEta > 0 ? (Z_ENDCAP - fZ) / tanTheta : (-Z_ENDCAP - fZ) / tanTheta;
if (rEndcap > R_BARREL) { // barrel
mR = R_BARREL;
mZ = fZ + R_BARREL * tanTheta;
} else {
double zRef = Z_BIG; // very forward;
if (rEndcap > R_FORWARD)
zRef = Z_ENDCAP; // endcap
else if (std::fabs(fEta) < ETA_MAX)
zRef = Z_FORWARD; // forward
mZ = fEta > 0 ? zRef : -zRef;
mR = std::fabs((mZ - fZ) / tanTheta);
}
}
double etaReference(double fZ) {
Jet::Point p(r(), 0., z() - fZ);
return p.eta();
}
double thetaReference(double fZ) {
Jet::Point p(r(), 0., z() - fZ);
return p.theta();
}
double z() const { return mZ; }
double r() const { return mR; }
private:
CaloPointZ() {}
double mZ;
double mR;
};
//new implementation to derive CaloPoint for free 3d vertex.
//code provided thanks to Christophe Saout
template <typename Point>
class CaloPoint3D : private CaloPoint {
public:
template <typename Vector, typename Point2>
CaloPoint3D(const Point2 &vertex, const Vector &dir) {
// note: no sanity checks here, make sure vertex is inside the detector!
// check if positive or negative (or none) endcap should be tested
int side = dir.z() < -1e-9 ? -1 : dir.z() > 1e-9 ? +1 : 0;
double dirR = dir.Rho();
// normalized direction in x-y plane
double dirUnit[2] = {dir.x() / dirR, dir.y() / dirR};
// rotate the vertex into a coordinate system where dir lies along x
// vtxLong is the longitudinal coordinate of the vertex wrt/ dir
double vtxLong = dirUnit[0] * vertex.x() + dirUnit[1] * vertex.y();
// tIP is the (signed) transverse impact parameter
double tIP = dirUnit[0] * vertex.y() - dirUnit[1] * vertex.x();
// r and z coordinate
double r, z;
if (side) {
double slope = dirR / dir.z();
// check extrapolation to endcap
r = vtxLong + slope * (side * Z_ENDCAP - vertex.z());
double r2 = sqr(r) + sqr(tIP);
if (r2 < R_FORWARD2) {
// we are in the forward calorimeter, recompute
r = vtxLong + slope * (side * Z_FORWARD - vertex.z());
z = side * Z_FORWARD;
} else if (r2 < R_BARREL2) {
// we are in the endcap
z = side * Z_ENDCAP;
} else {
// we are in the barrel, do the intersection below
side = 0;
}
}
if (!side) {
// we are in the barrel
double slope = dir.z() / dirR;
r = std::sqrt(R_BARREL2 - sqr(tIP));
z = vertex.z() + slope * (r - vtxLong);
}
// rotate (r, tIP, z) back into original x-y coordinate system
point = Point(dirUnit[0] * r - dirUnit[1] * tIP, dirUnit[1] * r + dirUnit[0] * tIP, z);
}
const Point &caloPoint() const { return point; }
private:
template <typename T>
static inline T sqr(const T &value) {
return value * value;
}
Point point;
};
} // namespace
Jet::Jet(const LorentzVector &fP4, const Point &fVertex, const Constituents &fConstituents)
: CompositePtrCandidate(0, fP4, fVertex), mJetArea(0), mPileupEnergy(0), mPassNumber(0), mIsWeighted(false) {
for (unsigned i = 0; i < fConstituents.size(); i++) {
addDaughter(fConstituents[i]);
}
}
Jet::Jet(const LorentzVector &fP4, const Point &fVertex)
: CompositePtrCandidate(0, fP4, fVertex), mJetArea(0), mPileupEnergy(0), mPassNumber(0), mIsWeighted(false) {}
/// eta-phi statistics
Jet::EtaPhiMoments Jet::etaPhiStatistics() const {
std::vector<const Candidate *> towers = getJetConstituentsQuick();
double phiRef = phi();
double sumw = 0;
double sumEta = 0;
double sumEta2 = 0;
double sumPhi = 0;
double sumPhi2 = 0;
double sumEtaPhi = 0;
int i = towers.size();
while (--i >= 0) {
double eta = towers[i]->eta();
double phi = deltaPhi(towers[i]->phi(), phiRef);
double weight = towers[i]->et();
sumw += weight;
sumEta += eta * weight;
sumEta2 += eta * eta * weight;
sumPhi += phi * weight;
sumPhi2 += phi * phi * weight;
sumEtaPhi += eta * phi * weight;
}
Jet::EtaPhiMoments result;
if (sumw > 0) {
result.etaMean = sumEta / sumw;
result.phiMean = deltaPhi(phiRef + sumPhi, 0.);
result.etaEtaMoment = (sumEta2 - sumEta * sumEta / sumw) / sumw;
result.phiPhiMoment = (sumPhi2 - sumPhi * sumPhi / sumw) / sumw;
result.etaPhiMoment = (sumEtaPhi - sumEta * sumPhi / sumw) / sumw;
} else {
result.etaMean = 0;
result.phiMean = 0;
result.etaEtaMoment = 0;
result.phiPhiMoment = 0;
result.etaPhiMoment = 0;
}
return result;
}
/// eta-eta second moment
float Jet::etaetaMoment() const {
std::vector<const Candidate *> towers = getJetConstituentsQuick();
double sumw = 0;
double sum = 0;
double sum2 = 0;
int i = towers.size();
while (--i >= 0) {
double value = towers[i]->eta();
double weight = towers[i]->et();
sumw += weight;
sum += value * weight;
sum2 += value * value * weight;
}
return sumw > 0 ? (sum2 - sum * sum / sumw) / sumw : 0;
}
/// phi-phi second moment
float Jet::phiphiMoment() const {
double phiRef = phi();
std::vector<const Candidate *> towers = getJetConstituentsQuick();
double sumw = 0;
double sum = 0;
double sum2 = 0;
int i = towers.size();
while (--i >= 0) {
double value = deltaPhi(towers[i]->phi(), phiRef);
double weight = towers[i]->et();
sumw += weight;
sum += value * weight;
sum2 += value * value * weight;
}
return sumw > 0 ? (sum2 - sum * sum / sumw) / sumw : 0;
}
/// eta-phi second moment
float Jet::etaphiMoment() const {
double phiRef = phi();
std::vector<const Candidate *> towers = getJetConstituentsQuick();
double sumw = 0;
double sumA = 0;
double sumB = 0;
double sumAB = 0;
int i = towers.size();
while (--i >= 0) {
double valueA = towers[i]->eta();
double valueB = deltaPhi(towers[i]->phi(), phiRef);
double weight = towers[i]->et();
sumw += weight;
sumA += valueA * weight;
sumB += valueB * weight;
sumAB += valueA * valueB * weight;
}
return sumw > 0 ? (sumAB - sumA * sumB / sumw) / sumw : 0;
}
/// et in annulus between rmin and rmax around jet direction
float Jet::etInAnnulus(float fRmin, float fRmax) const {
float result = 0;
std::vector<const Candidate *> towers = getJetConstituentsQuick();
int i = towers.size();
while (--i >= 0) {
double r = deltaR(*this, *(towers[i]));
if (r >= fRmin && r < fRmax)
result += towers[i]->et();
}
return result;
}
/// return # of constituent carring fraction of energy. Assume ordered towers
int Jet::nCarrying(float fFraction) const {
std::vector<const Candidate *> towers = getJetConstituentsQuick();
if (fFraction >= 1)
return towers.size();
double totalEt = 0;
for (unsigned i = 0; i < towers.size(); ++i)
totalEt += towers[i]->et();
double fractionEnergy = totalEt * fFraction;
unsigned result = 0;
for (; result < towers.size(); ++result) {
fractionEnergy -= towers[result]->et();
if (fractionEnergy <= 0)
return result + 1;
}
return 0;
}
/// maximum distance from jet to constituent
float Jet::maxDistance() const {
float result = 0;
std::vector<const Candidate *> towers = getJetConstituentsQuick();
for (unsigned i = 0; i < towers.size(); ++i) {
float dR = deltaR(*(towers[i]), *this);
if (dR > result)
result = dR;
}
return result;
}
/// static function to convert detector eta to physics eta
// kept for backwards compatibility, use detector/physicsP4 instead!
float Jet::physicsEta(float fZVertex, float fDetectorEta) {
CaloPointZ refPoint(0., fDetectorEta);
return refPoint.etaReference(fZVertex);
}
/// static function to convert physics eta to detector eta
// kept for backwards compatibility, use detector/physicsP4 instead!
float Jet::detectorEta(float fZVertex, float fPhysicsEta) {
CaloPointZ refPoint(fZVertex, fPhysicsEta);
return refPoint.etaReference(0.);
}
Candidate::LorentzVector Jet::physicsP4(const Candidate::Point &newVertex,
const Candidate &inParticle,
const Candidate::Point &oldVertex) {
CaloPoint3D<Point> caloPoint(oldVertex, inParticle.momentum()); // Jet position in Calo.
Vector physicsDir = caloPoint.caloPoint() - newVertex;
double p = inParticle.momentum().r();
Vector p3 = p * physicsDir.unit();
LorentzVector returnVector(p3.x(), p3.y(), p3.z(), inParticle.energy());
return returnVector;
}
Candidate::LorentzVector Jet::detectorP4(const Candidate::Point &vertex, const Candidate &inParticle) {
CaloPoint3D<Point> caloPoint(vertex, inParticle.momentum()); // Jet position in Calo.
static const Point np(0, 0, 0);
Vector detectorDir = caloPoint.caloPoint() - np;
double p = inParticle.momentum().r();
Vector p3 = p * detectorDir.unit();
LorentzVector returnVector(p3.x(), p3.y(), p3.z(), inParticle.energy());
return returnVector;
}
Jet::Constituents Jet::getJetConstituents() const {
Jet::Constituents result;
for (unsigned i = 0; i < numberOfDaughters(); i++) {
result.push_back(daughterPtr(i));
}
return result;
}
std::vector<const Candidate *> Jet::getJetConstituentsQuick() const {
std::vector<const Candidate *> result;
int nDaughters = numberOfDaughters();
for (int i = 0; i < nDaughters; ++i) {
if (!(this->sourceCandidatePtr(i).isNonnull() && this->sourceCandidatePtr(i).isAvailable())) {
edm::LogInfo("JetConstituentPointer")
<< "Bad pointer to jet constituent found. Check for possible dropped particle.";
continue;
}
result.push_back(daughter(i));
}
return result;
}
float Jet::constituentPtDistribution() const {
Jet::Constituents constituents = this->getJetConstituents();
float sum_pt2 = 0.;
float sum_pt = 0.;
for (unsigned iConst = 0; iConst < constituents.size(); ++iConst) {
float pt = constituents[iConst]->p4().Pt();
float pt2 = pt * pt;
sum_pt += pt;
sum_pt2 += pt2;
} //for constituents
float ptD_value = (sum_pt > 0.) ? sqrt(sum_pt2 / (sum_pt * sum_pt)) : 0.;
return ptD_value;
} //constituentPtDistribution
float Jet::constituentEtaPhiSpread() const {
Jet::Constituents constituents = this->getJetConstituents();
float sum_pt2 = 0.;
float sum_pt2deltaR2 = 0.;
for (unsigned iConst = 0; iConst < constituents.size(); ++iConst) {
LorentzVector thisConstituent = constituents[iConst]->p4();
float pt = thisConstituent.Pt();
float pt2 = pt * pt;
double dR = deltaR(*this, *(constituents[iConst]));
float pt2deltaR2 = pt * pt * dR * dR;
sum_pt2 += pt2;
sum_pt2deltaR2 += pt2deltaR2;
} //for constituents
float rmsCand_value = (sum_pt2 > 0.) ? sum_pt2deltaR2 / sum_pt2 : 0.;
return rmsCand_value;
} //constituentEtaPhiSpread
std::string Jet::print() const {
std::ostringstream out;
out << "Jet p/px/py/pz/pt: " << p() << '/' << px() << '/' << py() << '/' << pz() << '/' << pt() << std::endl
<< " eta/phi: " << eta() << '/' << phi() << std::endl
<< " # of constituents: " << nConstituents() << std::endl;
out << " Constituents:" << std::endl;
for (unsigned index = 0; index < numberOfDaughters(); index++) {
Constituent constituent = daughterPtr(index); // deref
if (constituent.isNonnull()) {
out << " #" << index << " p/pt/eta/phi: " << constituent->p() << '/' << constituent->pt() << '/'
<< constituent->eta() << '/' << constituent->phi() << " productId/index: " << constituent.id() << '/'
<< constituent.key() << std::endl;
} else {
out << " #" << index << " constituent is not available in the event" << std::endl;
}
}
return out.str();
}
void Jet::scaleEnergy(double fScale) { setP4(p4() * fScale); }
bool Jet::isJet() const { return true; }
|