1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
#ifndef DataFormats_L1TParticleFlow_layer1_emulator_h
#define DataFormats_L1TParticleFlow_layer1_emulator_h
#include <fstream>
#include <vector>
#include "DataFormats/L1TParticleFlow/interface/layer1_objs.h"
#include "DataFormats/L1TParticleFlow/interface/pf.h"
#include "DataFormats/L1TParticleFlow/interface/puppi.h"
#include "DataFormats/L1TParticleFlow/interface/egamma.h"
#include "DataFormats/L1TParticleFlow/interface/emulator_io.h"
namespace l1t {
class PFTrack;
class PFCluster;
class PFCandidate;
class SAMuon;
} // namespace l1t
namespace l1ct {
struct HadCaloObjEmu : public HadCaloObj {
const l1t::PFCluster *src = nullptr;
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear() {
HadCaloObj::clear();
src = nullptr;
}
};
struct EmCaloObjEmu : public EmCaloObj {
const l1t::PFCluster *src = nullptr;
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear() {
EmCaloObj::clear();
src = nullptr;
}
};
struct TkObjEmu : public TkObj {
uint16_t hwChi2;
float simPt, simCaloEta, simCaloPhi, simVtxEta, simVtxPhi, simZ0, simD0;
const l1t::PFTrack *src = nullptr;
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear() {
TkObj::clear();
src = nullptr;
hwChi2 = 0;
simPt = 0;
simCaloEta = 0;
simCaloPhi = 0;
simVtxEta = 0;
simVtxPhi = 0;
simZ0 = 0;
simD0 = 0;
}
};
struct MuObjEmu : public MuObj {
const l1t::SAMuon *src = nullptr;
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear() {
MuObj::clear();
src = nullptr;
}
};
struct PFChargedObjEmu : public PFChargedObj {
const l1t::PFCluster *srcCluster = nullptr;
const l1t::PFTrack *srcTrack = nullptr;
const l1t::SAMuon *srcMu = nullptr;
const l1t::PFCandidate *srcCand = nullptr;
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear() {
PFChargedObj::clear();
srcCluster = nullptr;
srcTrack = nullptr;
srcMu = nullptr;
srcCand = nullptr;
}
};
struct PFNeutralObjEmu : public PFNeutralObj {
const l1t::PFCluster *srcCluster = nullptr;
const l1t::PFCandidate *srcCand = nullptr;
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear() {
PFNeutralObj::clear();
srcCluster = nullptr;
srcCand = nullptr;
}
};
struct PFRegionEmu : public PFRegion {
PFRegionEmu() : PFRegion() {}
PFRegionEmu(float etaCenter, float phicenter);
PFRegionEmu(float etamin, float etamax, float phicenter, float phiwidth, float etaextra, float phiextra);
// global coordinates
bool contains(float eta, float phi) const;
bool containsHw(glbeta_t glbeta, glbphi_t phi) const;
float localEta(float globalEta) const;
float localPhi(float globalPhi) const;
bool read(std::fstream &from);
bool write(std::fstream &to) const;
};
struct PuppiObjEmu : public PuppiObj {
const l1t::PFCluster *srcCluster = nullptr;
const l1t::PFTrack *srcTrack = nullptr;
const l1t::SAMuon *srcMu = nullptr;
const l1t::PFCandidate *srcCand = nullptr;
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear() {
PuppiObj::clear();
srcCluster = nullptr;
srcTrack = nullptr;
srcMu = nullptr;
srcCand = nullptr;
}
inline void fill(const PFRegionEmu ®ion, const PFChargedObjEmu &src) {
PuppiObj::fill(region, src);
srcCluster = src.srcCluster;
srcTrack = src.srcTrack;
srcMu = src.srcMu;
srcCand = src.srcCand;
}
inline void fill(const PFRegionEmu ®ion, const PFNeutralObjEmu &src, pt_t puppiPt, puppiWgt_t puppiWgt) {
PuppiObj::fill(region, src, puppiPt, puppiWgt);
srcCluster = src.srcCluster;
srcTrack = nullptr;
srcMu = nullptr;
srcCand = src.srcCand;
}
inline void fill(const PFRegionEmu ®ion, const HadCaloObjEmu &src, pt_t puppiPt, puppiWgt_t puppiWgt) {
PuppiObj::fill(region, src, puppiPt, puppiWgt);
srcCluster = src.src;
srcTrack = nullptr;
srcMu = nullptr;
srcCand = nullptr;
}
};
struct EGObjEmu : public EGIsoObj {
const l1t::PFCluster *srcCluster = nullptr;
void clear() {
srcCluster = nullptr;
EGIsoObj::clear();
}
};
struct EGIsoObjEmu : public EGIsoObj {
const l1t::PFCluster *srcCluster;
// NOTE: we use an index to the persistable RefPtr when we reshuffle collections
// this way we avoid complex object in the object interface which needs to be used in standalone programs
int src_idx;
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear() {
EGIsoObj::clear();
srcCluster = nullptr;
src_idx = -1;
clearIsoVars();
}
void clearIsoVars() {
hwIsoVars[0] = 0;
hwIsoVars[1] = 0;
hwIsoVars[2] = 0;
hwIsoVars[3] = 0;
hwIsoVars[4] = 0;
hwIsoVars[5] = 0;
}
using EGIsoObj::floatIso;
enum IsoType { TkIso = 0, PfIso = 1, TkIsoPV = 2, PfIsoPV = 3, PuppiIso = 4, PuppiIsoPV = 5 };
float floatIso(IsoType type) const { return Scales::floatIso(hwIsoVars[type]); }
float floatRelIso(IsoType type) const { return Scales::floatIso(hwIsoVars[type]) / floatPt(); }
float hwIsoVar(IsoType type) const { return hwIsoVars[type]; }
void setHwIso(IsoType type, iso_t value) { hwIsoVars[type] = value; }
iso_t hwIsoVars[6];
};
struct EGIsoEleObjEmu : public EGIsoEleObj {
const l1t::PFCluster *srcCluster = nullptr;
const l1t::PFTrack *srcTrack = nullptr;
// NOTE: we use an index to the persistable RefPtr when we reshuffle collections
// this way we avoid complex object in the object interface which needs to be used in standalone programs
int src_idx;
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear() {
EGIsoEleObj::clear();
srcCluster = nullptr;
srcTrack = nullptr;
src_idx = -1;
clearIsoVars();
}
void clearIsoVars() {
hwIsoVars[0] = 0;
hwIsoVars[1] = 0;
hwIsoVars[2] = 0;
}
using EGIsoEleObj::floatIso;
enum IsoType { TkIso = 0, PfIso = 1, PuppiIso = 2 };
float floatIso(IsoType type) const { return Scales::floatIso(hwIsoVars[type]); }
float floatRelIso(IsoType type) const { return Scales::floatIso(hwIsoVars[type]) / floatPt(); }
float hwIsoVar(IsoType type) const { return hwIsoVars[type]; }
void setHwIso(IsoType type, iso_t value) { hwIsoVars[type] = value; }
iso_t hwIsoVars[3];
};
struct PVObjEmu : public PVObj {
bool read(std::fstream &from);
bool write(std::fstream &to) const;
};
template <typename T>
struct DetectorSector {
PFRegionEmu region;
std::vector<T> obj;
DetectorSector() {}
DetectorSector(float etamin, float etamax, float phicenter, float phiwidth, float etaextra = 0, float phiextra = 0)
: region(etamin, etamax, phicenter, phiwidth, etaextra, phiextra) {}
// convenience forwarding of some methods
typedef typename std::vector<T>::const_iterator const_iterator;
typedef typename std::vector<T>::iterator iterator;
inline const T &operator[](unsigned int i) const { return obj[i]; }
inline T &operator[](unsigned int i) { return obj[i]; }
inline const_iterator begin() const { return obj.begin(); }
inline iterator begin() { return obj.begin(); }
inline const_iterator end() const { return obj.end(); }
inline iterator end() { return obj.end(); }
inline unsigned int size() const { return obj.size(); }
inline void resize(unsigned int size) { obj.resize(size); }
inline void clear() { obj.clear(); }
};
struct RawInputs {
std::vector<DetectorSector<ap_uint<96>>> track;
DetectorSector<ap_uint<64>> muon; // muons are global
std::vector<DetectorSector<ap_uint<256>>> hgcalcluster;
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear();
};
struct RegionizerDecodedInputs {
std::vector<DetectorSector<HadCaloObjEmu>> hadcalo;
std::vector<DetectorSector<EmCaloObjEmu>> emcalo;
std::vector<DetectorSector<TkObjEmu>> track;
DetectorSector<MuObjEmu> muon; // muons are global
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear();
};
struct PFInputRegion {
PFRegionEmu region;
std::vector<HadCaloObjEmu> hadcalo;
std::vector<EmCaloObjEmu> emcalo;
std::vector<TkObjEmu> track;
std::vector<MuObjEmu> muon;
PFInputRegion() {}
PFInputRegion(float etamin, float etamax, float phicenter, float phiwidth, float etaextra, float phiextra)
: region(etamin, etamax, phicenter, phiwidth, etaextra, phiextra) {}
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear();
};
struct OutputRegion {
std::vector<PFChargedObjEmu> pfcharged;
std::vector<PFNeutralObjEmu> pfphoton;
std::vector<PFNeutralObjEmu> pfneutral;
std::vector<PFChargedObjEmu> pfmuon;
std::vector<PuppiObjEmu> puppi;
std::vector<EGObjEmu> egsta;
std::vector<EGIsoObjEmu> egphoton;
std::vector<EGIsoEleObjEmu> egelectron;
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear();
// for multiplicities
enum ObjType {
anyType = 0,
chargedType = 1,
neutralType = 2,
electronType = 3,
muonType = 4,
chargedHadronType = 5,
neutralHadronType = 6,
photonType = 7,
nPFTypes = 8,
egisoType = 8,
egisoeleType = 9,
nObjTypes = 10
};
static constexpr const char *objTypeName[nObjTypes] = {
"", "Charged", "Neutral", "Electron", "Muon", "ChargedHadron", "NeutralHadron", "Photon", "EGIso", "EGIsoEle"};
unsigned int nObj(ObjType type, bool puppi) const;
};
struct OutputBoard {
float eta;
float phi;
// NOTE: region_index is not written to the dump file
std::vector<unsigned int> region_index;
std::vector<EGIsoObjEmu> egphoton;
std::vector<EGIsoEleObjEmu> egelectron;
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear();
};
struct Event {
enum { VERSION = 13 };
uint32_t run, lumi;
uint64_t event;
RawInputs raw;
RegionizerDecodedInputs decoded;
std::vector<PFInputRegion> pfinputs;
std::vector<PVObjEmu> pvs;
std::vector<ap_uint<64>> pvs_emu;
std::vector<OutputRegion> out;
std::vector<OutputBoard> board_out;
Event() : run(0), lumi(0), event(0) {}
bool read(std::fstream &from);
bool write(std::fstream &to) const;
void clear();
void init(uint32_t run, uint32_t lumi, uint64_t event);
inline l1ct::PVObjEmu pv(unsigned int ipv = 0) const {
l1ct::PVObjEmu ret;
if (ipv < pvs.size())
ret = pvs[ipv];
else
ret.clear();
return ret;
}
inline ap_uint<64> pv_emu(unsigned int ipv = 0) const {
ap_uint<64> ret = 0;
if (ipv < pvs_emu.size())
ret = pvs_emu[ipv];
return ret;
}
};
template <typename T1, typename T2>
void toFirmware(const std::vector<T1> &in, unsigned int NMAX, T2 out[/*NMAX*/]) {
unsigned int n = std::min<unsigned>(in.size(), NMAX);
for (unsigned int i = 0; i < n; ++i)
out[i] = in[i];
for (unsigned int i = n; i < NMAX; ++i)
out[i].clear();
}
} // namespace l1ct
#endif
|